【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年,京津冀等地數(shù)城市指數(shù)“爆表”,尤其2015年污染最重.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份某星期星期一到星期日某一時間段車流量與PM2.5的數(shù)據(jù)如表:
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(Ⅰ)由散點(diǎn)圖知y與x具有線性相關(guān)關(guān)系,求y關(guān)于x的線性回歸方程;
(Ⅱ)(ⅰ)利用(Ⅰ)所求的回歸方程,預(yù)測該市車流量為8萬輛時PM2.5的濃度;
(ⅱ)規(guī)定:當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級為良.為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)?(結(jié)果以萬輛為單位,保留整數(shù).)
參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長是2,側(cè)棱長是,D是AC的中點(diǎn)。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)在線段AA1上是否存在一點(diǎn)E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的兩個焦點(diǎn)分別為, ,過作橢圓長軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率是( )
A. B. C. D.
【答案】C
【解析】試題分析:解:設(shè)點(diǎn)P在x軸上方,坐標(biāo)為(),∵為等腰直角三角形,∴|PF2|=|F1F2|, ,故選D.
考點(diǎn):橢圓的簡單性質(zhì)
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中a,b,c和e的關(guān)系
【題型】單選題
【結(jié)束】
8
【題目】“”是“對任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出如下結(jié)論:
①函數(shù)是奇函數(shù);
②存在實(shí)數(shù),使得;
③若是第一象限角且,則;
④是函數(shù)的一條對稱軸方程;
⑤函數(shù)的圖形關(guān)于點(diǎn)成中心對稱圖形.
其中正確的結(jié)論的序號是__________.(填序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于區(qū)間,若函數(shù)同時滿足:①在上是單調(diào)函數(shù);②函數(shù),的值域是,則稱區(qū)間為函數(shù)的“保值”區(qū)間.
(1)求函數(shù)的所有“保值”區(qū)間.
(2)函數(shù)是否存在“保值”區(qū)間?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中(為坐標(biāo)原點(diǎn)),已知兩點(diǎn),,且三角形的內(nèi)切圓為圓,從圓外一點(diǎn)向圓引切線,為切點(diǎn)。
(1)求圓的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn),且,試判斷點(diǎn)是否總在某一定直線上,若是,求出直線的方程;若不是,請說明理由.
(3)已知點(diǎn)在圓上運(yùn)動,求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某奶茶公司對一名員工進(jìn)行測試以便確定其考評級別.公司準(zhǔn)備了兩種不同的奶茶共5 杯,其顏色完全相同,并且其中3杯為奶茶,另外2杯為奶茶,公司要求此員工一一品嘗后,從5杯奶茶中選出2杯奶茶.若該員工2杯都選奶茶,則評為優(yōu)秀;若2 杯選對1杯奶茶,則評為良好;否則評為及格.假設(shè)此人對和兩種奶茶沒有鑒別能力.
(Ⅰ)求此人被評為優(yōu)秀的概率;(Ⅱ)求此人被評為良好及以上的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com