【題目】設拋物線C:y2=3px(p≥0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為( )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x
科目:高中數學 來源: 題型:
【題目】中國古代數學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關,初步健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數,請公仔仔細算相還”.其大意為:“有一個走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達目的地”.則該人第五天走的路程為( )
A.48里
B.24里
C.12里
D.6里
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通項公式;
(Ⅱ)求數列 的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點O為圓心,橢圓C的長半軸為半徑的圓與直線2x﹣ y+6=0相切.
(1)求橢圓C的標準方程;
(2)已知點A,B為動直線y=k(x﹣2)(k≠0)與橢圓C的兩個交點,問:在x軸上是否存在點E,使 2+ 為定值?若存在,試求出點E的坐標和定值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2cos2x+sin2x+a(a∈R).
(1)求函數f(x)的最小正周期和單調遞增區(qū)間;
(2)當 時,f(x)的最大值為2,求a的值,并求出y=f(x)(x∈R)的對稱軸方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=x2+|x﹣m|(m為實數)是偶函數,記a=f(log e),b=f(log3π),c=f(em)(e為自然對數的底數),則a,b,c的大小關系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,動圓經過點M(0,t﹣2),N(0,t+2),P(﹣2,0).其中t∈R.
(1)求動圓圓心E的軌跡方程;
(2)過點P作直線l交軌跡E于不同的兩點A,B,直線OA與直線OB分別交直線x=2于兩點C,D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com