已知函數(shù)f(x)=
lg(x2-2x)
9-x2
的定義域?yàn)锳,
(1)求A;
(2)若B={x|x2-2x-3≥0},求A∩B.
考點(diǎn):對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)成立的條件即可求出A;
(2)根據(jù)集合的基本運(yùn)算即可求A∩B.
解答: 解:(1)要使函數(shù)有意義,則
x2-2x>0
9-x2>0
,
x>2或x<0
-3<x<3
,
解得-3<x<0或2<x<3,
故A={x|-3<x<0或2<x<3};
(2)∵B={x|x2-2x-3≥0}={x|x≥3或x≤-1},A={x|-3<x<0或2<x<3};
∴A∩B={x|-3<x≤-1}.
點(diǎn)評:本題主要考查函數(shù)的定義域的求解以及集合的基本運(yùn)算,要求熟練掌握常見函數(shù)成立的條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx在[1,2]上是增函數(shù),g(x)=x-a
x
在(0,1]上是減函數(shù).
(Ⅰ)求f(x)、g(x)的表達(dá)式;
(Ⅱ)當(dāng)b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1]內(nèi)恒成立,求b的取值的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在研究函數(shù)f(x)=
x2+1
+
x2-6x+10
的性質(zhì)時,受到兩點(diǎn)間距離公式的啟發(fā),將f(x)變形為f(x)=
(x-0)2+(0-1)2
+
(x-3)2+(0+1)2
,則f(x)表示|PA|+|PB|(如左圖),則 
①f(x)的圖象是中心對稱圖形;
②f(x)的圖象是軸對稱圖形;
③函數(shù)f(x)的值域?yàn)?span id="e4ik6c2" class="MathJye">[
13
,+∞);
④函數(shù)f(x)在區(qū)間(-∞,3)上單調(diào)遞減;
⑤方程f[f(x)]=1+
10
有兩個解.
上述關(guān)于函數(shù)f(x)的描述正確的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面△ABC的直觀圖A′B′C′是邊長為a的正三角形則原三角形的面積是( 。
A、
6
2
a2
B、
3
4
a2
C、
3
2
a2
D、
1
2
a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司準(zhǔn)備進(jìn)行兩種組合投資,穩(wěn)健型組合投資是由每份金融投資20萬元,房地產(chǎn)投資30萬元組成;進(jìn)取型組合投資是由每份金融投資40萬元,房地產(chǎn)投資30萬元組成.已知每份穩(wěn)健型組合投資每年可獲利10萬元,每份進(jìn)取型組合投資每年可獲利15萬元.若可作投資用的資金中,金融投資不超過160萬元,房地產(chǎn)投資不超過180萬元,要使一年獲利總額最多,則穩(wěn)健型組合投資與進(jìn)取型組合,合投資分別注入的份數(shù)分別為( 。
A、x=4,y=2
B、x=3,y=3
C、x=5,y=1
D、x=5,y=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足:a1=-
1
4
,anan-1=an-1
-1,(n>1),則a2015=( 。
A、-
1
4
B、
1
4
C、
4
5
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-(k-1)a-x,(a>0且a≠1)是定義域?yàn)镽的奇函數(shù),且f(1)=
3
2

(1)求k,a的值;
(2)求函數(shù)f(x)在[1,+∞)上的值域;
(3)設(shè)g(x)=a2x+a-2x-2m•f(x),若g(x)在[1,+∞)上的最小值為-2,求m的值;
(4)對于(3)中函數(shù)g(x),如果g(x)>0在[1,+∞)上恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且對任意n∈N*都有Sn+
1
2
an=
1
2

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log3a1+log3a2+log3a3+…+log3an,求數(shù)列{
1
bn
}
的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),a4a7+a5a6=18,則log3a1+log3a2+…+log3a10=(  )
A、10
B、12
C、1+lo
g
5
3
D、2+lo
g
5
3

查看答案和解析>>

同步練習(xí)冊答案