17.若點(diǎn)P在$-\frac{4}{3}π$角的終邊上,且P的坐標(biāo)為(-1,y),則y等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 由條件利用任意角的三角函數(shù)的定義、誘導(dǎo)公式,求得y的值.

解答 解:∵點(diǎn)P在$-\frac{4}{3}π$角的終邊上,且P的坐標(biāo)為(-1,y),
∴tan(-$\frac{4π}{3}$)=-tan$\frac{4π}{3}$=-tan$\frac{π}{3}$=-$\sqrt{3}$=$\frac{y}{-1}$,
∴y=$\sqrt{3}$,
故選:B.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義、誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$是定義在R上的奇函數(shù),且f(1)=2.
(1)求實(shí)數(shù)a,b并寫出函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在(-1,1)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=3|x|+log3|x|.
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)說明函數(shù)f(x)在(0,+∞)上的單調(diào)性,并利用單調(diào)性定義證明;
(3)若 f(2a)<28,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知點(diǎn)A(2,8),B(x1,y1),C(x2,y2)都在拋物線y2=2px上,△ABC的重心與此拋物線的焦點(diǎn)F重合(如圖)
(1)寫出該拋物線的方程和焦點(diǎn)F的坐標(biāo);
(2)求線段BC中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知矩陣M=$|\begin{array}{l}{2}&{3}\\{a}&{1}\end{array}|$的一個(gè)特征值為4,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x1=$\int{\begin{array}{l}1\\ 0\end{array}}\sqrt{1-{x^2}}$dx,x2=e-1.1(其中e為自然對(duì)數(shù)的底數(shù)),實(shí)數(shù)x3滿足$\frac{1}{{{x_3}^2}}=lg{x_3}$,則x1,x2,x3的大小關(guān)系為( 。
A.x1>x2>x3B.x2>x1>x3C.x3>x2>x1D.x3>x1>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知log2b<log2a<log2c,則( 。
A.($\frac{1}{2}$)b>($\frac{1}{2}$)a>($\frac{1}{2}$)cB.($\frac{1}{2}$)a>($\frac{1}{2}$)b>($\frac{1}{2}$)cC.($\frac{1}{2}$)c>($\frac{1}{2}$)b>($\frac{1}{2}$)aD.($\frac{1}{2}$)c>($\frac{1}{2}$)a>($\frac{1}{2}$)b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,$\overrightarrow a=({a_1},1),\overrightarrow b=(1,{a_{10}})$,若$\overrightarrow a•\overrightarrow b=24$,且S11=143,數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足${2^{{a_n}-1}}=λ{(lán)T_n}-({a_1}-1)(n∈{N^*})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式及數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和Mn
(Ⅱ)是否存在非零實(shí)數(shù)λ,使得數(shù)列{bn}為等比數(shù)列?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓C1:(x+2)2+(y-1)2=4與圓C2:(x-3)2+(y-4)2=4,過點(diǎn)P(-1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2時(shí),設(shè)l1與圓C1交于A、B兩點(diǎn),求經(jīng)過A、B兩點(diǎn)面積最小的圓的方程.
(2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長與l2被圓C2截得的弦長相等.
(3)是否存在點(diǎn)Q,過Q的無數(shù)多對(duì)斜率之積為1的直線l3,l4,l3被圓C1截得的弦長與l4被圓C2截得的弦長相等.若存在求Q的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案