已知A、B、C是直線上的不同三點(diǎn),O是外一點(diǎn),向量滿足,記;
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間.
(1);(2)單調(diào)增區(qū)間為.
解析試題分析:(1)利用平面向量基本定理求解;(2)由(1)得解析式,然后利用導(dǎo)數(shù)求解單調(diào)增區(qū)間.
試題解析:(1)∵ ,且A、B、C是直線上的不同三點(diǎn),
∴,
∴;
(2)∵,∴, ∵的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4e/3/1wxks4.png" style="vertical-align:middle;" />,而在上恒正, ∴在上為增函數(shù),
即的單調(diào)增區(qū)間為.
考點(diǎn):1.平面向量基本定理;2.利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a6/0/dtddp.png" style="vertical-align:middle;" />,并且滿足,且,當(dāng)時,
(1).求的值;(3分)
(2).判斷函數(shù)的奇偶性;(3分)
(3).如果,求的取值范圍.(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/e/wr05g1.png" style="vertical-align:middle;" />的函數(shù)(為實(shí)數(shù))。
(1)若是奇函數(shù),求的值;
(2)當(dāng)是奇函數(shù)時,證明對任何實(shí)數(shù)都有成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/16/d/knnds1.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中
(1)對于函數(shù),當(dāng)時,,求實(shí)數(shù)的取值集合;
(2)當(dāng)時,的值為負(fù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù), .
(1)若, 函數(shù) 在其定義域是增函數(shù),求的取值范圍;
(2)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn),過線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,其中R.
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時,若,,總有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),證明:
(Ⅰ)對每個,存在唯一的,滿足;
(Ⅱ)對任意,由(Ⅰ)中構(gòu)成的數(shù)列滿足.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com