2.為了考察某種藥物預(yù)防禽流感的效果,某研究中心選了50只鴨子做實驗,統(tǒng)計結(jié)果如下:
得禽流感不得禽流感總計
服藥52025
不服藥151025
總計203050
(1)能有多大的把握認為藥物有效?
(2)在服藥后得禽流感的鴨子中,有2只母鴨,3只公鴨,在這5只中隨機抽取3只再進行研究,求至少抽到1只母鴨的概率.
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
臨界值表:
 P(K2≥k0 0.10 0.05 0.01
 k0 2.706 3.841 6.635

分析 (1)根據(jù)公式假設(shè)K2的值,對照臨界值表即可得出結(jié)論;
(2)利用列舉法求出基本事件數(shù),計算所求的概率值.

解答 解:(1)假設(shè)H0:服藥與家禽得流感沒有關(guān)系,
則K2=$\frac{50{×(5×10-15×20)}^{2}}{20×30×25×25}$≈8.333>6.635
∵P(K2>6.635)=0.01,
1-0.01=0.99,
∴有99%的把握認為藥物有效;
(2)記2只母鴨為a、b,3只公鴨為A、B、C,
則從這5只中隨機抽取3只的基本事件為:
abA、abB、abC、aAB、aAC、aBC、bAB、bAC、bBC、ABC共10種,
則至少抽到1只母鴨的基本事件是9種,
故所求的概率為P=$\frac{9}{10}$.

點評 本題考查了獨立性檢驗與列舉法求古典概型的概率問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合M={y|y=$\frac{1}{{x}^{2}}$},N={x|y=$\sqrt{x-1}$},那么M∩N=( 。
A.(0,+∞)B.(1,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知曲線y=$\frac{{x}^{2}}{2}$-3lnx的一條切線的與直線x+2y+10=0垂直,則切點的橫坐標為(  )
A.$\frac{1}{3}$B.2C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知⊙C:x2+y2-2x-4y-20=0,直線l:(2m+1)x+(m+1)y-7m-4=0.
(1)求證:直線l與⊙C恒有兩個交點;
(2)若直線l與⊙C的兩個不同交點分別為A,B.求線段AB中點P的軌跡方程,并求弦AB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線l過拋物線x2=-8y的焦點F,且與雙曲線$\frac{x^2}{9}-\frac{y^2}{3}=1$在一、三象限的漸近線平行,則直線l截圓${({x-4\sqrt{3}})^2}+{y^2}=4$所得的弦長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義域R在上的奇函數(shù),且在區(qū)間[0,+∞)單調(diào)遞增,若實數(shù)a滿足f(log2a)+f(log2$\frac{1}{a}$)≤2f(1),則a的取值范圍是( 。
A.(-∞,2]B.$({0,\frac{1}{2}}]$C.$[{\frac{1}{2},2}]$D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)若cos$({\frac{π}{4}+x})$=$\frac{3}{5}$,$\frac{17}{12}$π<x<$\frac{7}{4}$π,求$\frac{{sin2x+2si{n^2}x}}{1-tanx}$的值.
(2)已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x-1(x∈R),若f(x0)=$\frac{6}{5}$,x0∈[$\frac{π}{4}$,$\frac{π}{2}$],求cos2x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.由1,2,3這三個數(shù)字組成的沒有重復(fù)數(shù)字的三位自然數(shù)共有(  )
A.6個B.8個C.12個D.15個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某企業(yè)員工500人參加“學(xué)雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖:
(1)如表是年齡的頻數(shù)分布表,求a,b的值;
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
(2)根據(jù)頻率分布直方圖估計志愿者年齡的平均數(shù)和中位數(shù);
(3)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的分別抽取多少人?
(4)在(3)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案