已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個(gè)圓.
(1)求實(shí)數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

(1)-<m<1(2)0<r≤(3)y=4(x-3)2-1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線(xiàn)HF交BC的延長(zhǎng)線(xiàn)于點(diǎn)G.求證:

(1)圓心O在直線(xiàn)AD上;
(2)點(diǎn)C是線(xiàn)段GD的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線(xiàn)的方程為:為常數(shù)).
(1)判斷曲線(xiàn)的形狀;
(2)設(shè)曲線(xiàn)分別與軸、軸交于點(diǎn)、不同于原點(diǎn)),試判斷的面積是否為定值?并證明你的判斷;
(3)設(shè)直線(xiàn)與曲線(xiàn)交于不同的兩點(diǎn)、,且,求曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的方程:
(1)求m的取值范圍;
(2)若圓C與直線(xiàn)相交于,兩點(diǎn),且,求的值
(3)若(1)中的圓與直線(xiàn)x+2y-4=0相交于M、N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:(x-3)2+(y-4)2=4,直線(xiàn)l1過(guò)定點(diǎn)A(1,0).
(1)若l1與圓相切,求l1的方程;
(2)若l1與圓相交于P、Q兩點(diǎn),線(xiàn)段PQ的中點(diǎn)為M,又l1與l2:x+2y+2=0的交點(diǎn)為N,判斷AM·AN是否為定值?若是,則求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,圓O1與圓O2的半徑都是1,O1O2=4,過(guò)動(dòng)點(diǎn)P分別作圓O1、圓O2的切線(xiàn)PM、PN(M、N分別為切點(diǎn)),使得PM=PN,試建立適當(dāng)?shù)淖鴺?biāo)系,并求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓:,過(guò)定點(diǎn)作斜率為1的直線(xiàn)交圓、兩點(diǎn),為線(xiàn)段的中點(diǎn).
(1)求的值;
(2)設(shè)為圓上異于的一點(diǎn),求△面積的最大值;
(3)從圓外一點(diǎn)向圓引一條切線(xiàn),切點(diǎn)為,且有 , 求的最小值,并求取最小值時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線(xiàn)ly=2x-4.設(shè)圓C的半徑為1,圓心在l上.
 
(1)若圓心C也在直線(xiàn)yx-1上,過(guò)點(diǎn)A作圓C的切線(xiàn),求切線(xiàn)的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,直線(xiàn),過(guò)上一點(diǎn)A作,使得,邊AB過(guò)圓心M,且B,C在圓M上,求點(diǎn)A縱坐標(biāo)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案