設(shè)f(θ)=
2cos3θ+sin2(2π-θ)+sin(
π
2
+θ)-3
2+2sin2(
π
2
+θ)-sin(
2
-θ)
,求f(
π
3
)的值.
考點(diǎn):三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:利用三角函數(shù)的誘導(dǎo)公式化簡,然后代入θ=
π
3
求得答案.
解答: 解:f(θ)=
2cos3θ+sin2(2π-θ)+sin(
π
2
+θ)-3
2+2sin2(
π
2
+θ)-sin(
2
-θ)

=
2cos3θ+sin2θ+cosθ-3
2+2cos2θ+cosθ
,
∴f(
π
3
)=
2cos3
π
3
+sin2
π
3
+cos
π
3
-3
2+2cos2
π
3
+cos
π
3

=
2×(
1
2
)3+(
3
2
)2+
1
2
-3
2+2×(
1
2
)2+
1
2

=-
1
2
點(diǎn)評:本題考查了三角函數(shù)的誘導(dǎo)公式,考查了三角函數(shù)的值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)P(4,2)作圓(x+1)2+(y-1)2=1的一條切線,切點(diǎn)為Q,則|PQ|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C、D是同一球面上的四個(gè)點(diǎn),其中△ABC是正三角形,AD⊥平面ABC,AD=4,AB=2
3
,則該球的表面積為( 。
A、8πB、16π
C、32πD、64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式能否成立,說明理由:
(1)cos2x=1.5
(2)sin2x=-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2k2x+k,x∈[0,1],函數(shù)g(x)=3x2-2(k2+k+1)x+5,x∈[-1,0].對任意x1∈[0,1],存在x2∈[-1,0],g(x2)<f(x1)成立.求k的取值范圍.(gmin(x)<fmin(x))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2,設(shè)函數(shù)g(x)=-qf[f(x)]+(2q-1)f(x)+1,是否存在實(shí)數(shù)q(q>0),使得g(x)在區(qū)間(-∞,-4)是減函數(shù),且在區(qū)間(-4,0)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列x,a1,a2,…,am,y和x,b1,b2…,bn,y都是等差數(shù)列,公差分別為d1,d2,且x≠y,則d1:d2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞增,若a=f(sin
7
),b=f(cos
7
),c=f(tan
7
),則( 。
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式1+2x+4xa>0,則a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案