20.函數(shù)$y=\frac{x}{{{x^2}+a}}$的圖象不可能是( 。
A.B.
C.D.

分析 通過a的取值,判斷函數(shù)的圖象,推出結(jié)果即可.

解答 解:當a=0時,函數(shù)化為y=$\frac{1}{x}$,函數(shù)的圖象為:A;
當a=1時,x=0時,y=0,x≠0時,函數(shù)化為y=$\frac{1}{x+\frac{1}{x}}$,函數(shù)的圖象為:B;
當a=-1時,函數(shù)化為y=$\frac{x}{{x}^{2}-1}$,當x∈(0,1)時,y′=$\frac{{x}^{2}-1-2{x}^{2}}{({x}^{2}-1)^{2}}$<0,函數(shù)是減函數(shù),f(0)=0,可知函數(shù)的圖象為:D;
故選:C.

點評 本題考查函數(shù)的單調(diào)性的應(yīng)用,函數(shù)的導數(shù)的應(yīng)用,賦值法的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

10.在△ABC中,角C=60°,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,則tan$\frac{A}{2}$•tan$\frac{B}{2}$=1-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=sin(3x+$\frac{π}{4}$)的圖象適當變換就可以得到y(tǒng)=cos3x的圖象,這種變換可以是( 。
A.向右平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{12}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向左平移$\frac{π}{12}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知三棱臺ABC-A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點D是B1C1的中點,求二面角A1-BD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,AB為圓O的直徑,點E,F(xiàn)在圓O上,AB∥EF,矩形ABCD所在的平面和圓(x-1)2+y2=1所在的平面互相垂直,且AB=2,AD=EF=1,∠BAF=60°.
(1)求證:AF⊥平面CBF;
(2)設(shè)FC的中點為M,求三棱錐M-DAF的體積V1與多面體CD-AFEB的體積V2之比的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx+mx(m為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當$m≤-\frac{{3\sqrt{2}}}{2}$時,設(shè)$g(x)=f(x)+\frac{1}{2}{x^2}$的兩個極值點x1,x2(x1<x2)恰為h(x)=2lnx-ax-x2的零點,求$y=({x_1}-{x_2})h'(\frac{{{x_1}+{x_2}}}{2})$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知$\frac{π}{2}<α<π$,3sin2α=2cosα,則$sin(α-\frac{9π}{2})$=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知0<a<b,且a+b=1,則下列不等式中正確的是(  )
A.log2a>0B.2a-b<$\frac{1}{2}$C.log2a+log2b<-2D.2($\frac{a}$+$\frac{a}$)<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知命題p:?x∈R,2x2+2x+$\frac{1}{2}$<0,命題q:?x0∈R,sinx0-cosx0=$\sqrt{2}$,則下列判斷中正確的是( 。
A.p是真命題B.q是假命題C.¬p是假命題D.¬q是假命題

查看答案和解析>>

同步練習冊答案