根據(jù)三個(gè)函數(shù)f(x)=2x,g(x)=2x,h(x)=log2x給出以下五句話:
(1)f(x),g(x),h(x)在其定義域上都是增函數(shù);
(2)f(x)的增長速度始終不變;
(3)f(x)的增長速度越來越快;
(4)g(x)的增長速度越來越快;
(5)h(x)的增長速度越來越慢.
其中正確的個(gè)數(shù)為( 。
A、2B、3C、4D、5
考點(diǎn):命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用冪函數(shù)、指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的單調(diào)性質(zhì)即可判斷其正誤;
(2)f′(x)=2,利用導(dǎo)數(shù)的幾何意義可知(2)與(3)的正誤;
(4)利用g′(x)=2xin2為增函數(shù),可判斷(4)的正誤;
(5)利用h′(x)=
1
xln2
>0,在(0,+∞)上為減函數(shù),可判斷(5)之正誤.
解答: 解:∵f(x)=2x,g(x)=2x,h(x)=log2x,
∴f(x),g(x),h(x)在其定義域上都是增函數(shù),即(1)正確;
又f′(x)=2,
∴f(x)的增長速度始終不變,即(2)正確,(3)錯(cuò)誤;
∵g′(x)=2xin2為增函數(shù),
∴g(x)的增長速度越來越快,即(4)正確;
又h′(x)=
1
xln2
>0,在(0,+∞)上為減函數(shù),
∴h(x)的增長速度越來越慢,即(5)正確;
綜上所述,正確的命題為:(1)(2)(4)(5),共4個(gè).
故選:C.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,著重考查導(dǎo)數(shù)的幾何意義及應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某三棱錐的三視圖如圖所示,該三棱錐的體積是( 。
A、18
3
B、36
3
C、12
3
D、24
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-1|-|x+2|≥3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5,6,7,8,9,這10個(gè)數(shù)字中同時(shí)取4個(gè)不同的數(shù),其和為偶數(shù),則不同的取法為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是兩條異面直線l,m外的任意一點(diǎn),則下列命題:
①過點(diǎn)P有且只有一條直線與l,m都平行;
②過點(diǎn)P有且只有一條直線與l,m都垂直;
③過點(diǎn)P有且只有一條直線與l,m都相交;
④過點(diǎn)P有且只有一條直線與l,m都異面.
其中假命題的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若(m+i)2=3-4i,則實(shí)數(shù)m的值為( 。
A、-2
B、±2
C、±
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只螞蟻在三邊長分別為3,4,5的三角形內(nèi)爬行,則此螞蟻距離三角形三個(gè)頂點(diǎn)的距離均超過1的概率為( 。
A、1-
π
6
B、1-
π
12
C、
π
6
D、
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)為A1,A2,B1,B2,焦點(diǎn)為F1,F(xiàn)2,|A1B2|=
7
,S?A1B1A2B2=2S ?B1F1B2F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線m過Q(1,1),且與橢圓相交于M,N兩點(diǎn),當(dāng)Q是MN的中點(diǎn)時(shí),求直線m的方程.
(Ⅲ)設(shè)n為過原點(diǎn)的直線,l是與n垂直相交于P點(diǎn)且與橢圓相交于兩點(diǎn)A,B的直線,|
OP
|=1
,是否存在上述直線l使以AB為直徑的圓過原點(diǎn)?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且2
F1F2
+
F2Q
=
0

(1)求橢圓C的離心率; 
(2)若過A、Q、F2三點(diǎn)的圓恰好與直線l:x-
3
y-3=0相切,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案