3.我縣2014年末汽車保有量為2萬輛,預計此后每年報廢上年末汽車保有量的5%,并且每年新增汽車數(shù)量相同,為保護全縣環(huán)境,緩解交通壓力,要求我縣汽車保有量不超過5萬輛,那么每年新增汽車數(shù)量不應超過多少輛?

分析 設每年新增汽車為x萬輛,從2014年起該城市第n年末的汽車保有量為an,依題意可知b1=30,根據(jù)題意{an-20x}是以0.95為公比,以2-20x為首項的等比數(shù)列,判斷出數(shù)列的單調(diào)性,然后利用數(shù)列的極限求得問題的答案.

解答 解:設每年新增汽車為x萬輛,從2014年起該城市第n年末的汽車保有量為an
則an=(1-5%)an-1+x=0.95an-1+x(n≥2),即an-20x=0.95(an-1-20x)
∴{an-20x}是以0.95為公比,以2-20x為首項的等比數(shù)列
∴$a{\;}_n-20x=(2-20x)•{0.95^{n-1}}$,即${a_n}=20x+(2-20x)•{0.95^{n-1}}$…(7分)
(1)當2-20x≥0即x≤0.1時,an≤an-1≤…≤a1=2
(2)當2-20x<0即x>0.1時,數(shù)列{an}為遞增數(shù)列,且n→+∞時,an→20x
由題20x≤5,即x≤0.25(萬輛)…(11分)
綜上,每年新增汽車不應超過0.25萬輛.…(12分)

點評 本題主要考查了數(shù)列的應用,以及數(shù)列與不等式的綜合.考查了學生綜合分析問題和解決問題的能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

13.在等差數(shù)列{an}中,若a3+a9=8,則數(shù)列{an}的前11項和S11等于44.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在△ABC中內(nèi)角A,B,C的對邊分別為a,b,c,已知$a=2\sqrt{2},c=2\sqrt{2},∠A={60°}$
(1)求sinC的值
(2)求b邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知向量$\overrightarrow a$=(2,1),$\overrightarrow b$=(-1,k),若$\overrightarrow a$⊥(2$\overrightarrow a$-$\overrightarrow b$),則k=( 。
A.-12B.12C.6D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$f(x)=2sinxcos(φ-x)-\frac{1}{2}$($0<φ<\frac{π}{2}$)的圖象過點$(\frac{π}{3},1)$.
(Ⅰ)求φ的值;        
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{1+2lnx}{x^2}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)令g(x)=ax2-2lnx-1,若函數(shù)y=g(x)有兩個不同的零點,求實數(shù)a的取值范圍.
(3)若存在x1,x2∈(0,+∞)且x1≠x2,使$\frac{{f({x_1})-f({x_2})}}{{ln{x_1}-ln{x_2}}}≤k$成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某班100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均數(shù)、中位數(shù)、眾數(shù);
(2)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,80)之外的人數(shù).
分數(shù)段[50,60)[60,70)[70,80)[80,90)
x:y1:12:13:44:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=Asin(ωx+φ)A>0且ω>0,0<φ<$\frac{π}{2}$的部分圖象,如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)已知f(2x0)=-$\frac{{\sqrt{3}}}{2}$,x0∈(0,$\frac{5π}{6}$),求x0的值;
(3)若函數(shù)h(x)=2f(x)-a在[0,$\frac{4π}{3}$]上有兩個不同的零點,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=loga(2x-3)(a>0且a≠1),
(1)求f(x)函數(shù)的定義域;
(2)求使f(x)>0成立的x的取值范圍;
(3)當x∈[2,5],求f(x)函數(shù)的值域.

查看答案和解析>>

同步練習冊答案