【題目】已知圓C:及點(diǎn)P(0,1),過(guò)點(diǎn)P的直線(xiàn)與圓交于A、B兩點(diǎn).
(1)若弦長(zhǎng)求直線(xiàn)AB的斜率;
(2)求△ABC面積的最大值,及此時(shí)弦長(zhǎng)
【答案】(1)斜率為0或 ;(2) △ABC面積的最大值為, .
【解析】
(1)利用垂徑定理,可以求出圓心到直線(xiàn)的距離,設(shè)出直線(xiàn)的方程,利用點(diǎn)到直線(xiàn)的距離公式可以求出直線(xiàn)的斜率;
(2)設(shè)出弦的長(zhǎng)為、圓心到直線(xiàn)的距離,根據(jù)垂徑定理可知的關(guān)系,求出三角形面積,根據(jù)基本不等式求出△ABC面積的最大值,及此時(shí)弦長(zhǎng)
(1) 圓C的圓心坐標(biāo)為,半徑為3, 由垂徑定理及勾股定理可知:圓心到直線(xiàn)直線(xiàn)AB的距離,設(shè)直線(xiàn)AB的斜率為,則方程為,由點(diǎn)到直線(xiàn)距離公式可得:,
解得或;
(2)設(shè)、圓心到直線(xiàn)的距離,根據(jù)垂徑定理、勾股定理可知:,,當(dāng)且僅當(dāng)取等號(hào),此時(shí),
所以求△ABC面積的最大值為, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB為直徑在△ABC外作半圓O,P為半圓弧AB上的動(dòng)點(diǎn),點(diǎn)Q在斜邊BC上,若=,則的最小值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:若,則;
(2)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度(單位:℃),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位: )和時(shí)段投入成本(單位:萬(wàn)元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
17.40 | 82.30 | 3.6 | 140 | 9.7 | 2935.1 | 35.0 |
其中.
(1)根據(jù)散點(diǎn)圖判斷, 與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類(lèi)型?(給判斷即可,不必說(shuō)明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為28℃時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對(duì)于一組具有有線(xiàn)性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為
②
0.08 | 0.47 | 2.72 | 20.09 | 1096.63 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知p:函數(shù)f(x)在R上是增函數(shù),f(m2)<f(m+2)成立;q:方程1(m∈R)表示雙曲線(xiàn).
(1)若p為真命題,求m的取值范圍;
(2)若p∨q為真,p∧q為假,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若時(shí),求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在長(zhǎng)方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上移動(dòng).
(Ⅰ)求證:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在點(diǎn)E使得AD1與平面D1EC成的角為?若存在,求出AE的長(zhǎng),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于無(wú)窮數(shù)列,若正整數(shù),使得當(dāng)時(shí),有,則稱(chēng)為“不減數(shù)列”.
(1)設(shè),均為正整數(shù),且,甲:為“不減數(shù)列”,乙:為“不減數(shù)列”.試判斷命題:“甲是乙的充分條件”的真假,并說(shuō)明理由;
(2)已知函數(shù)與函數(shù)的圖象關(guān)于直線(xiàn)對(duì)稱(chēng),數(shù)列滿(mǎn)足,,如果為“不減數(shù)列”,試求的最小值;
(3)對(duì)于(2)中的,設(shè),且.是否存在實(shí)數(shù)使得為“不減數(shù)列”?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn),斜率為的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且.
(1)求該拋物線(xiàn)的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線(xiàn)上一點(diǎn),若,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com