5.求圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)關(guān)于直線x+y=0對(duì)稱的充要條件D+E=0.

分析 求出圓的圓心坐標(biāo),代入直線方程,即可得到D、E的關(guān)系.

解答 解:曲線x2+y2+Dx+Ey+F=0(D2+E2-4F>0)關(guān)于x+y=0成軸對(duì)稱圖形,即圓心在x+y=0上.圓心坐標(biāo)是(-$\frac{D}{2}$,-$\frac{E}{2}$),所以D+E=0.
所以圓x2+y2+Dx+Ey+F=0(D2+E2-4F>0)關(guān)于直線x+y=0對(duì)稱是圓心在該直線x+y=0上,即D+E=0.
故答案是:D+E=0.

點(diǎn)評(píng) 考查直線與圓的位置關(guān)系,考查計(jì)算能力,?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.點(diǎn)P(-1,6,-3)關(guān)于點(diǎn)M(2,4,5)的對(duì)稱點(diǎn)的坐標(biāo)為(5,2,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.根據(jù)三角函數(shù)值的范圍求角的范圍.
(1)sinθ≥$\frac{\sqrt{2}}{2}$;
(2)cosθ<$\frac{1}{2}$;
(3)tanθ≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-4|x|+3,x∈R.
(1)判斷函數(shù)的奇偶性并將函數(shù)寫成分段函數(shù)的形式;
(2)畫出函數(shù)的圖象,根據(jù)圖象寫出它的單調(diào)區(qū)間;
(3)若函數(shù)f(x)的圖象與y=a的圖象有四個(gè)不同交點(diǎn),則實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線x=-1的傾斜角為α,則α=(  )
A.B.45°C.90°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.(log94)(log227)=( 。
A.1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè){an}為等差數(shù)列,Sn是其前n項(xiàng)和,已知S7=7,S15=75,Tn為數(shù)列{$\frac{{S}_{n}}{n}$}的前n項(xiàng)和,
(1)求a1和d;
(2)求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)常數(shù)a>0,(x+$\frac{a}{\sqrt{x}}$)9展開式中x6的系數(shù)為4,則$\underset{lim}{n→∞}$(a+a2+…+an)=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案