|
|
已知x,y滿(mǎn)足且目標(biāo)函數(shù)z=2x+y的最大值為7,最小值為1,則
|
[ ] |
A. |
2
|
B. |
1
|
C. |
-1
|
D. |
-2
|
|
|
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
若(x-1)8=a0+a1(1+x)+a2(1+x)2+…+a8(1+x)8,則a6=
|
[ ] |
A. |
112
|
B. |
28
|
C. |
-28
|
D. |
-112
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知x∈R,那么x2>1是x>1的
|
[ ] |
A. |
必要而不充分條件
|
B. |
充分而不必要條件
|
C. |
充要條件
|
D. |
既不充分又不必要條件
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
如圖所示,PA⊥平面ABCD,四邊形ABCD為正方形,且2PA=AD,E、F、G、H分別是線(xiàn)段PA、PD、CD、BC的中點(diǎn).
(Ⅰ)求證:BC∥平面EFG;
(Ⅱ)求證:DH⊥平面AEG;
(Ⅲ)求三棱錐E-AFG與四棱錐P-ABCD的體積比.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=
|
[ ] |
A. |
|
B. |
1-p
|
C. |
1-2p
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
給出下面的數(shù)表序列:
其中表i(i=1,2,3,…)有i行,表中每一個(gè)數(shù)“兩腳”的兩數(shù)都是此數(shù)的2倍,記表n中所有的數(shù)之和為an,例如a2=5,a3=17,a4=49,則an=________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
已知函數(shù)f(x)=ln(ex+a)(e為常數(shù))是R上的奇函數(shù),函數(shù)g(x)=λf(x)+sinx是區(qū)間[-1,1]上的減函數(shù).
(Ⅰ)求a的值;
(Ⅱ)若g(x)<t2+λt+1在x∈[-1,1]上恒成立,求t的取值范圍;
(Ⅲ)討論關(guān)于x的方程的根的個(gè)數(shù).
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:課標(biāo)綜合版 專(zhuān)題復(fù)習(xí)
題型:
|
|
關(guān)于x的不等式:的解集為[m,n],若n-m=3,則實(shí)數(shù)k的值等于________.
|
|
|
查看答案和解析>>