2.已知函數(shù)f(x)=ex-e-x+4sin3x+1,x∈(-1,1),若f(1-a)+f(1-a2)>2成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,1)B.(0,1)C.$({1,\sqrt{2}})$D.(-∞,-2)∪(1,+∞)

分析 令g(x)=f(x)-1,則可得g(x)為奇函數(shù),且g(x)在(-1,1)上為增函數(shù),進(jìn)而可得答案.

解答 解:令g(x)=f(x)-1=ex-e-x+4sin3x,
則g(-x)=-g(x),即g(x)為奇函數(shù),
若f(1-a)+f(1-a2)>2成立,
即g(1-a)+g(1-a2)>0成立,
即g(1-a)>-g(1-a2)=g(a2-1),
∵g′(x)=ex+e-x+12sin2xcosx≥0在x∈(-1,1)時恒成立,
故g(x)在(-1,1)上為增函數(shù),
故-1<a2-1<1-a<1,
解得:a∈(0,1),
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的奇偶性,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列說法正確的是( 。
A.若f(x)是奇函數(shù),則f(0)=0
B.若α是銳角,則2α是一象限或二象限角
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$
D.集合A={P|P⊆{1,2}}有4個元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x(lnx-1)
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)g(x)=f(x)-$\frac{a}{2}$x2有兩個極值點(diǎn)x1,x2,試比較$\frac{1}{ln{x}_{1}}$+$\frac{1}{ln{x}_{2}}$與2ae的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l:(2m+1)x+(m+1)y-7m-4=0,圓C:(x-1)2+(y-1)2=25.
(1)求證:直線l過定點(diǎn);
(2)當(dāng)m為何值時,直線l被圓C截得的弦最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.$k=±\frac{{\sqrt{5}}}{2}$是直線y=kx-1與曲線x2-y2=4僅有一個公共點(diǎn)的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)l,m,n表示三條不同的直線,α,β,γ表示三個不同的平面,給出下列四個命題:
①若l⊥α,m⊥l,m⊥β,則α⊥β;
②若m?β,n是l在β內(nèi)的射影,m⊥n,則m⊥l;
③若α⊥β,α⊥γ,則α∥β
其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$,且數(shù)列6x,z,2y為等差數(shù)列,則實(shí)數(shù)z的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,“a>b”是“sinA>sinB”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow$=(2,y,2),若|$\overrightarrow{a}$|=6,且$\overrightarrow{a}$⊥$\overrightarrow$,則x+y的值為(  )
A.-3B.1C.-3或1D.3或1

查看答案和解析>>

同步練習(xí)冊答案