若x>0,y>0,且lgx+lgy=1,則
2
x
+
5
y
的最小值為( 。
A、
1
2
B、1
C、2
D、3
考點(diǎn):基本不等式在最值問題中的應(yīng)用
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:根據(jù)對(duì)數(shù)的基本運(yùn)算,結(jié)合基本不等式即可得到結(jié)論.
解答: 解:∵lgx+lgy=1,
∴l(xiāng)gxy=1,且x>0,y>0,
即xy=10,
2
x
+
5
y
≥2
2
x
5
y
=2,
當(dāng)且僅當(dāng)
2
x
=
5
y
,即x=2,y=5時(shí)取等號(hào),
故選:C.
點(diǎn)評(píng):本題主要考查不等式的應(yīng)用,利用對(duì)數(shù)的基本運(yùn)算求出xy=10是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)fx)=tan(2x+
π
4
).
(1)求fx)的定義域與最小正周期;
(2)設(shè)α∈(0,
π
4
),若f(
α
2
=2cos 2α,求α的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
b
x-1
-a(a∈R,a≠0),f′(3)=a-
1
2

(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)的定義域?yàn)镽,若f(-x+1)=f(x+1),且f(1)=1,f(0)=0則f(4)+f(5)=(  )
A、2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
100
+
y2
64
=1的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn).
(1)求PF1•PF2的最大值.
(2)若∠F1PF2=
π
3
,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在同一坐標(biāo)系中畫出函數(shù)y=ax,y=x+a的圖象,可能正確的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖程序框圖(判斷條件k≤20?),那么輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)當(dāng)m<
1
2
時(shí),求集合B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過直線4x+3y-1=0和x+2y+1=0的交點(diǎn)并且與直線x-2y-1=0垂直的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案