15.設(shè)不等式組$\left\{\begin{array}{l}x+y≥0\\ x≤2\\ y≤0\end{array}\right.$表示的平面區(qū)域?yàn)镈,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn),則此點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率是1-$\frac{π}{4}$.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,求出對(duì)應(yīng)的面積,結(jié)合幾何概型的概率公式進(jìn)行計(jì)算即可.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖,
對(duì)應(yīng)區(qū)域?yàn)槿切蜲AB,A(2,0),B(2,-2),
則三角形OAB的面積S=$\frac{1}{2}×2×2$=2,
∠AOB=45°,
則扇形OAC的面積S=$\frac{45}{360}×π×{2}^{2}$=$\frac{π}{2}$,
則圓外的面積S=2-$\frac{π}{2}$,
則點(diǎn)到坐標(biāo)原點(diǎn)的距離大于2的概率P=$\frac{2-\frac{π}{2}}{2}$=1-$\frac{π}{4}$,
故答案為:1-$\frac{π}{4}$

點(diǎn)評(píng) 本題給出不等式組表示的平面區(qū)域,求在區(qū)域內(nèi)投點(diǎn)使該到原點(diǎn)距離大于2的概率,著重考查了二元一次不等式組表示的平面區(qū)域和幾何概型等知識(shí)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為150°,|$\overrightarrow{AB}$|=$\sqrt{3}$|$\overrightarrow{AC}$|=$\sqrt{3}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,且$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,則$\frac{λ}{μ}$的值為$\frac{5}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知2個(gè)小孩和3個(gè)大人排隊(duì),其中2個(gè)小孩不能相鄰,則不同的排法種數(shù)有72種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知雙曲線$\frac{{x}^{2}}{5}$-y2=1的焦點(diǎn)是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的頂點(diǎn),且橢圓與雙曲線的離心率互為倒數(shù).
(I)求橢圓C的方程;
(Ⅱ)設(shè)動(dòng)點(diǎn)M在橢圓C上,且|MN|=$\frac{4\sqrt{3}}{3}$,記直線MN在y軸上的截距為m,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}滿足a1=$\frac{1}{4}$,an+1=an2+an(n∈N*),則$\sum_{n=1}^{2016}$$\frac{1}{{a}_{n}+1}$的整數(shù)部分是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知棱長(zhǎng)為$\sqrt{3}$的正方體ABCD-A1B1C1D1內(nèi)部有一圓柱,此圓柱恰好以直線AC1為軸,則該圓柱側(cè)面積的最大值為( 。
A.$\frac{{9\sqrt{2}}}{8}π$B.$\frac{{9\sqrt{2}}}{4}π$C.$2\sqrt{3}π$D.$3\sqrt{2}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在△ABC中,∠B=90°,∠BAD=∠DAE=∠EAC,BD=2,DE=3.
(Ⅰ)求AB的長(zhǎng);
(Ⅱ)求sinC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.過(guò)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦點(diǎn)向圓x2+y2=a2作一條切線,若該切線與雙曲線的兩條漸進(jìn)線分別相交于第一、二象限,且被雙曲線的兩條漸進(jìn)線截得的線段長(zhǎng)為$\sqrt{3}a$,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.將函數(shù)y=$\sqrt{3}cosx+sinx({x∈R})$的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案