【題目】已知動圓與直線相切且與圓外切。

(1)求圓心的軌跡的方程;

(2)設第一象限內的點在軌跡上,若軸上兩點,,滿足. 延長、分別交軌跡兩點,若直線的斜率,求點的坐標.

【答案】(1)(2)

【解析】

1)結合題意,可知圓心P的軌跡為以為焦點,直線為準線的拋物線,建立方程,即可。(2)設出直線SA的方程,代入拋物線方程,用k,m表示M,N的縱坐標,結合,計算m,計算S坐標,即可。

(1)設動圓的半徑為

則圓心P到直線的距離,且,

故圓心到直線的距離為

由拋物線的定義知,圓心的軌跡是以為焦點,直線為準線的拋物線,

故軌跡的方程為.

(另法:設動圓的半徑為,圓心為,

,化簡得

(2)

,由,得,

的斜率和的斜率均存在,且互為相反數(shù)

的斜率為,則直線,

聯(lián)立

,,

(*),

由于的斜率為,將(*)中的換成

得到點的縱坐標,

故直線的斜率,

,此時,時,,

所以點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

時,求函數(shù)的單調增區(qū)間;

若函數(shù)上是增函數(shù),求實數(shù)a的取值范圍;

,且對任意,,,都有,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列命題中錯誤的是(

A.是函數(shù)的極值點;

B.,則;

C.函數(shù)的最小值為2

D.函數(shù)的定義域為[1,2],則函數(shù)的定義域為[2,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1時,求函數(shù)在點處的切線方程;

2求函數(shù)的單調區(qū)間;

3上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的提高,對城市空氣質量的關注度也逐步增大,圖2是某城市1月至8月的空氣質量檢測情況,圖中一、二、三、四級是空氣質量等級, 一級空氣質量最好,一級和二級都是質量合格天氣,下面四種說法正確的是( )

①1月至8月空氣合格天數(shù)超過20天的月份有5個

②第二季度與第一季度相比,空氣達標天數(shù)的比重下降了

③8月是空氣質量最好的一個月

④6月份的空氣質量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),過曲線上的點處的切線方程為

(1)若函數(shù)處有極值,求的解析式;

(2)在(1)的條件下,求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體ABCDABCD,平面垂直于對角線AC,且平面截得正方體的六個表面得到截面六邊形,記此截面六邊形的面積為S,周長為l,則(

A. S為定值,l不為定值 B. S不為定值,l為定值

C. Sl均為定值 D. Sl均不為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某汽車品牌為了了解客戶對于其旗下的五種型號汽車的滿意情況,隨機抽取了一些客戶進行回訪,調查結果如下表:

汽車型號

I

II

III

IV

V

回訪客戶(人數(shù))

250

100

200

700

350

滿意率

0.5

0.3

0.6

0.3

0.2

滿意率是指:某種型號汽車的回訪客戶中,滿意人數(shù)與總人數(shù)的比值.

(Ⅰ) 從III型號汽車的回訪客戶中隨機選取1人,則這個客戶不滿意的概率為________;

(Ⅱ) 從所有的客戶中隨機選取1個人,估計這個客戶滿意的概率;

(Ⅲ) 汽車公司擬改變投資策略,這將導致不同型號汽車的滿意率發(fā)生變化.假設表格中只有兩種型號汽車的滿意率數(shù)據(jù)發(fā)生變化,那么哪種型號汽車的滿意率增加0.1,哪種型號汽車的滿意率減少0.1,使得獲得滿意的客戶人數(shù)與樣本中的客戶總人數(shù)的比值達到最大?(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現(xiàn)從農(nóng)歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為(

A.B.C.D.

查看答案和解析>>

同步練習冊答案