設(shè)n為正整數(shù),規(guī)定:,已知
(1)解不等式:f(x)≤x;
(2)設(shè)集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.
【答案】分析:(1)因為是分段函數(shù),所以先根據(jù)定義域選擇解析式來構(gòu)造不等式,當(dāng)0≤x≤1時,由2(1-x)≤x求解;當(dāng)1<x≤2時,由x-1≤x求解,取后兩個結(jié)果取并集.
(2)先求得f(0),f(1),f(2),再分別求得f(f(0)),f(f(f(0)));f(f(1)),f(f(f(1)));f(f(f(2))).再觀察與自變量是否相等即可.
(3)看問題有2008重求值,一定用到周期性,所以先求出 ,,,,觀察是以4為周期,有 (k,r∈N)求解
(4)由(1)可得∈B、由(2)可得0、1、2∈B、由(3)可得、、、∈B,進而可證得結(jié)論.
解答:解:(1)①當(dāng)0≤x≤1時,由2(1-x)≤x得,x≥
≤x≤1.
②當(dāng)1<x≤2時,因x-1≤x恒成立.
∴1<x≤2.
由①,②得,f(x)≤x的解集為{x|≤x≤2}.
(2)∵f(0)=2,f(1)=0,f(2)=1,
∴當(dāng)x=0時,f3(0)=f(f(f(0)))=f(-f(2))=f(1)=0;
當(dāng)x=1時,f3(1)=f(f(f(1)))=f(f(0))=f(2)=1;
當(dāng)x=2時,f3(2)=f(f(f(2)))=f(f(1))=f(0)=2.
即對任意x∈A,恒有f3(x)=x.
(3)
,
,

一般地,(k,r∈N).

(4)由(1)知,f()=,∴fn)=,則f12)=,∴∈B.
由(2)知,對x=0、1、2,恒有f3(x)=x,∴f12(x)=x,則0、1、2∈B.
由(3)知,對x=、、,恒有f12(x)=x,∴、、∈B.
綜上所述、0、1、2、、、、∈B.
∴B中至少含有8個元素.
點評:本題考查的知識點是分段函數(shù)及分段不等式的解法,元素與集合關(guān)系的判定,函數(shù)的周期性,函數(shù)恒成立問題,分段函數(shù)問題要注意分類討論,還考查了分段函數(shù)多重求值,要注意從內(nèi)到外,根據(jù)自變量取值選擇好解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)(0≤x≤1)
x-1(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設(shè)集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2008(
8
9
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•惠州模擬)設(shè)n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)]}
n個f
,已知f(x)=
2(1-x),0≤x≤1
x-1,1<x≤2
,
(1)解不等式f(x)≤x;
(2)設(shè)集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)求f2007(
8
9
)
的值;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含8個元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n為正整數(shù),規(guī)定:fn(x)=
f{f[…f(x)…]}
n個f
,已知f(x)=
2(1-x)
x-1
,
(0≤x≤1)
(1<x≤2)

(1)解不等式:f(x)≤x;
(2)設(shè)集合A={0,1,2},對任意x∈A,證明:f3(x)=x;
(3)探求f2009(
8
9
)
;
(4)若集合B={x|f12(x)=x,x∈[0,2]},證明:B中至少包含有8個元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

  設(shè)n為正整數(shù),規(guī)定:fn(x)=,已知f(x)= .

(1)解不等式f(x)≤x

(2)設(shè)集合A={0,1,2},對任意xA,證明f3(x)=x

(3)求f2007()的值;

(4)(理)若集合B=,證明B中至少包含8個元素.

查看答案和解析>>

同步練習(xí)冊答案