如圖,三棱柱ABC-A1B1C1的底面是邊長為3的正三角形,側(cè)棱AA1垂直于底面ABC,AA1=,D是CB延長線上一點,且BD=BC.

(1)求證:直線BC1∥平面AB1D;

(2)求二面角B1-AD-B的大小;

(3)求三棱錐C1-ABB1的體積。

 

 

 

【答案】

 

(I),又,

四邊形是平行四邊形, 

平面,平面

直線平面

(Ⅱ)過,連結(jié)

平面,

是二面角的平面角。

 ,的中點,

中, 

,即二面角的大小為60°

Ⅲ)過,

平面,平面平面,

平面為點到平面的距離。

,

。

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點,AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點.
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點,且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點.
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大。

查看答案和解析>>

同步練習(xí)冊答案