【題目】三棱錐S﹣ABC中,SA⊥AB,SA⊥AC,AC⊥BC且AC=2,BC= , SB=
(1)證明:SC⊥BC;
(2)求三棱錐的體積VS﹣ABC

【答案】解:(1)∵SA⊥AB SA⊥AC AB∩AC=A
∴SA⊥平面ABC,∴AC為SC在平面ABC內(nèi)的射影,
又∵BC⊥AC,由三垂線定理得:SC⊥BC
(2)在△ABC中,AC⊥BC,AC=2,BC=,∴AB= =
∵SA⊥AB,∴△SAB為Rt△,SB=,∴SA==2,
∵SA⊥平面ABC,∴SA為棱錐的高,
∴VSABC=××AC×BC×SA=×2××2=

【解析】(1)因?yàn)镾A⊥面ABC,AC為SC在面ABC內(nèi)的射影,由三垂線定理可直接得證.
(2)由題意可直接找出側(cè)面SBC與底面ABC所成二面角的平面角是∠SCA,在直角三角形中求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

已知橢圓的短軸長(zhǎng)為,且與拋物線有共同的焦點(diǎn),橢圓的左頂點(diǎn)為A,右頂點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),直線與直線分別交于兩點(diǎn).

I)求橢圓的方程;

)求線段的長(zhǎng)度的最小值;

)在線段的長(zhǎng)度取得最小值時(shí),橢圓上是否存在一點(diǎn),使得的面積為,若存在求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 、分別為的中點(diǎn).

)證明: 平面

)證明:平面平面

)當(dāng)上的動(dòng)點(diǎn)滿足什么條件時(shí),使三棱錐的體積與四棱錐體積的比值為,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABCD為正方形,P為平面ABCD外一點(diǎn),且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關(guān)系是(
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中, ,點(diǎn)E,H分別是所在邊靠近B,D的三等分點(diǎn),現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.

(1)證明:平面BCE∥平面ADH;

(2)證明:EHAC;

(3)求二面角B-AC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐的三個(gè)側(cè)面均為邊長(zhǎng)是的等邊三角形, , 分別為 的中點(diǎn).

(I)求的長(zhǎng).

(II)求證:

(III)求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人們對(duì)環(huán)境關(guān)注度的提高,綠色低碳出行越來(lái)越受到市民重視. 為此貴陽(yáng)市建立了公共自行車(chē)服務(wù)系統(tǒng),市民憑本人二代身份證到自行車(chē)服務(wù)中心辦理誠(chéng)信借車(chē)卡借車(chē),初次辦卡時(shí)卡內(nèi)預(yù)先贈(zèng)送20積分,當(dāng)積分為0時(shí),借車(chē)卡將自動(dòng)鎖定,限制借車(chē),用戶應(yīng)持卡到公共自行車(chē)服務(wù)中心以1元購(gòu)1個(gè)積分的形式再次激活該卡,為了鼓勵(lì)市民租用公共自行車(chē)出行,同時(shí)督促市民盡快還車(chē),方便更多的市民使用,公共自行車(chē)按每車(chē)每次的租用時(shí)間進(jìn)行扣分收費(fèi),具體扣分標(biāo)準(zhǔn)如下:

①租用時(shí)間不超過(guò)1小時(shí),免費(fèi);

②租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí),扣1分;

③租用時(shí)間為2小時(shí)以上且不超過(guò)3小時(shí),扣2分;

④租用時(shí)間超過(guò)3小時(shí),按每小時(shí)扣2分收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算).

甲、乙兩人獨(dú)立出行,各租用公共自行車(chē)一次,兩人租車(chē)時(shí)間都不會(huì)超過(guò)3小時(shí),設(shè)甲、乙租用時(shí)間不超過(guò)1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過(guò)2小時(shí)的概率分別是0.4和0.3.

(1)求甲、乙兩人所扣積分相同的概率;

(2)設(shè)甲、乙兩人所扣積分之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中央電視臺(tái)為了解該衛(wèi)視《朗讀者》節(jié)目的收視情況,抽查東西兩部各個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示其中一個(gè)數(shù)字被污損,

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過(guò)西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)朗讀以及經(jīng)典的閱讀學(xué)習(xí)積累的熱情,從中獲益匪淺,現(xiàn)從觀看節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了位觀眾的周均閱讀學(xué)習(xí)經(jīng)典知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對(duì)照表(如下表所示):

年齡

周均學(xué)習(xí)成語(yǔ)知識(shí)時(shí)間(小時(shí))

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測(cè)年齡為歲觀眾周均學(xué)習(xí)閱讀經(jīng)典知識(shí)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】畢節(jié)市正實(shí)施“五城同創(chuàng)”計(jì)劃。為搞好衛(wèi)生維護(hù)工作,政府招聘了200名市民志愿者,按年齡情況進(jìn)行統(tǒng)計(jì)的頻率分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

頻率

[30,35)

20

0.1

[35,40)

20

0.1

[40,45)

0.2

[45,50)

[50,55]

40

0.2

合計(jì)

200

1

(1)頻率分布表中的①②③位置應(yīng)填什么數(shù)?補(bǔ)全頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計(jì)這200名志愿者的平均年齡.

查看答案和解析>>

同步練習(xí)冊(cè)答案