半徑為1的球面上的四點(diǎn)A,B,C,D是正四面體的頂點(diǎn),則A與B兩點(diǎn)間的球面距離為( )
A.a(chǎn)rccos(-
B.a(chǎn)rccos(-
C.a(chǎn)rccos(-
D.a(chǎn)rccos(-
【答案】分析:由題意求出正四面體的棱長(zhǎng),利用余弦定理求出∠AOB,然后求出A與B兩點(diǎn)間的球面距離.
解答:解:半徑為1的球面上的四點(diǎn)A,B,C,D是正四面體的頂點(diǎn),所以正四面體擴(kuò)展為正方體的外接球與圓柱球相同,正方體的對(duì)角線就是外接球的直徑,所以正四面體的棱長(zhǎng)為:;


A與B兩點(diǎn)間的球面距離為:1×arccos(-)=arccos(-
故選C.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查正四面體的外接球的知識(shí),考查空間想象能力,計(jì)算能力,球面距離的求法,是?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A、B、C、D是半徑為1的球面上的四個(gè)不同點(diǎn),且滿(mǎn)足
AB
AC
=0,
AC
AD
=0,
AD
AB
=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

連接球面上兩點(diǎn)的線段稱(chēng)為球的弦,半徑為4的球的兩條弦AB、CD的長(zhǎng)度分別為2
7
和4
3
,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動(dòng),有下面四個(gè)命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省贛州市于都中學(xué)高三(下)強(qiáng)化訓(xùn)練數(shù)學(xué)試卷2(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個(gè)不同點(diǎn),且滿(mǎn)足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省新鄉(xiāng)市衛(wèi)輝高級(jí)中學(xué)高三(下)2月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個(gè)不同點(diǎn),且滿(mǎn)足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年四川省內(nèi)江市、廣安市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)A、B、C、D是半徑為1的球面上的四個(gè)不同點(diǎn),且滿(mǎn)足=0,=0,=0,用S1、S2、S3分別表示△ABC、△ACD、ABD的面積,則S1+S2+S3的最大值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案