20.已知曲線f(x)=x2+a在點(1,f(1))處切線的斜率等于f(2),則實數(shù)a值為( 。
A.-2B.-1C.$\frac{3}{2}$D.2

分析 首先對f(x)求導(dǎo),由f'(1)=f(2)列出等式,求出a值即可;

解答 解:∵f'(x)=2x,f(2)=4+a;
又因為f'(1)=2,
所以,4+a=2⇒a=-2;
故選:A

點評 本題主要考查了導(dǎo)數(shù)定義的理解以及導(dǎo)數(shù)的幾何意義,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若函數(shù)f(x)=sin(2x+φ)滿足?x∈R,f(x)≤f($\frac{π}{6}$),則f(x)在[0,π]上的單調(diào)遞增區(qū)間為( 。
A.[0,$\frac{π}{6}$]與[$\frac{π}{2}$,$\frac{2π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[0,$\frac{π}{6}$]與[$\frac{2π}{3}$,π]D.[0,$\frac{π}{6}$]與[$\frac{π}{3}$,$\frac{2π}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面為直角梯形,AD∥BC,AD=2BC=2,BC⊥DC,∠BAD=60°,平面PAD⊥底面ABCD,E為AD的中點,△PAD為正三角形,M是棱PC上的一點(異于端點).
(Ⅰ)若M為PC中點,求證:PA∥平面BME;
(Ⅱ)是否存在點M,使二面角M-BE-D的大小為30°.若存在,求出點M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.( I)若直線l:(a+1)x+y+2-a=0(a∈R)的橫截距是縱截距的2倍,求直線l的方程;
( II)過點P(0,3)作直線l與圓C:x2+y2-2x-4y-6=0交于A,B兩點,且OA⊥OB(O為坐標原點),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)g(x)=xe(2-a)x(a∈R),e為自然對數(shù)的底數(shù).
(1)討論g(x)的單調(diào)性;
(2)若函數(shù)f(x)=lng(x)-ax2的圖象與直線y=m(m∈R)交于A,B兩點,線段AB中點的橫坐標為x0,證明:f'(x0)<0.(f'(x)為函數(shù)f(x)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若拋物線y2=2px(p>0)上的點$A({x}_{0},\sqrt{2})$到其焦點的距離是A到y(tǒng)軸距離的3倍,則P=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)當x>0時,求證:2-$\frac{e}{x}≤lnx≤\frac{x}{e}$;
(2)當函數(shù)y=ax(a>1)與函數(shù)y=x有且僅有一個交點,求a的值;
(3)討論函數(shù)y=a|x|-|x|(a>0且a≠1)y=a的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知公比為2的等比數(shù)列{an}的前n項和為Sn,則$\frac{{S}_{3}}{{a}_{1}+{a}_{4}}$等于( 。
A.$\frac{1}{2}$B.$\frac{5}{7}$C.$\frac{2}{3}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面直角坐標系中,直線l:3x-y-6=0與圓C:x2+y2-2x+4y=0的位置關(guān)系是( 。
A.相離B.相切
C.直線與圓相交但不經(jīng)過圓心D.直線經(jīng)過圓心

查看答案和解析>>

同步練習(xí)冊答案