已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷f(x)在(1,+∞)上的單調(diào)性并加以證明.
【答案】分析:(1)由已知中函數(shù)的解析式,根據(jù)f(1)=2,,代入構(gòu)造關(guān)于a,b的方程組,解方程組可得a、b的值;
(2)設(shè)x1,x2∈(1,+∞),且x1<x2,根據(jù)(1)中函數(shù)的解析式,代入判斷f(x1)與f(x2)的大小,進而根據(jù)函數(shù)單調(diào)性的定義,得到答案.
解答:解:(1)∵函數(shù),且f(1)=2,
,
解得
(2)設(shè)x1,x2∈(1,+∞),且x1<x2

∵x1,x2∈(1,+∞),且x1<x2
∴x1-x2<0,x1x2>1,x1x2-1>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴f(x)在(1,+∞)上是增函數(shù).
點評:本題考查的知識點是待定系數(shù)法求函數(shù)的解析式,函數(shù)單調(diào)性的判斷與證明,根據(jù)已知求出函數(shù)的解析式,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省黃山市屯溪一中高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù),且f(1)=log162,f(-2)=1.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列xn的項滿足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],試求x1,x2,x3,x4
(3)猜想數(shù)列xn的通項,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省舟山市岱山縣大衢中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷f(x)在(1,+∞)上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌外國語學(xué)校高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù),且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設(shè)點P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標(biāo);
(3)當(dāng)x∈[1,2]時,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省中山實驗高中高一(上)10月段考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=3
(I)求a的值;
(II)判斷函數(shù)的奇偶性;
(III)判斷函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并證明.

查看答案和解析>>

同步練習(xí)冊答案