將點P(-2,2)變換為P′(-6,1)的伸縮變換公式為(  )
A.   B.C.   D.
C

試題分析:將橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050904964338.png" style="vertical-align:middle;" />倍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對任意實數(shù)a,b,函數(shù)F(a,b)=(a+b-|a-b|),如果函數(shù)f(x)=-x2+2x+3,g(x)=x+1,那么函數(shù)G(x)=F(f(x),g(x))的最大值等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(5分)(2011•廣東)設(shè)f(x),g(x),h(x)是R上的任意實值函數(shù),如下定義兩個函數(shù)(f°g)(x)和((f•g)(x)對任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),則下列等式恒成立的是(       )
A.((f°g)•h)(x)=((f•h)°(g•h))(x)
B.((f•g)°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.((f•g)•h)(x)=((f•h)•(g•h))(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,,,映射.對于直線上任意一點,,若,我們就稱為直線的“相關(guān)映射”,稱為映射的“相關(guān)直線”.又知
,則映射的“相關(guān)直線”有多少條(   )
A.B.C.D.無數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(2011•浙江)設(shè)函數(shù)f(x)=,若f(a)=4,則實數(shù)a=(  )
A.﹣4或﹣2B.﹣4或2C.﹣2或4D.﹣2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某食品公司為了解某種新品種食品的市場需求,進行了20天的測試,人為地調(diào)控每天產(chǎn)品的單價P(元/件):前10天每天單價呈直線下降趨勢(第10天免費贈送品嘗),后10天呈直線上升,其中4天的單價記錄如表:
時間(將第x天記為x)x
1
10
11
18
單價(元/件)P
9
0
1
8
而這20天相應(yīng)的銷售量Q(百件/天)與x對應(yīng)的點(x,Q)在如圖所示的半圓上.

(1)寫出每天銷售收入y(元)與時間x(天)的函數(shù)關(guān)系式y(tǒng)=f(x).
(2)在這20天中哪一天銷售收入最高?為使每天銷售收入最高,按此次測試結(jié)果應(yīng)將單價P定為多少元為好?(結(jié)果精確到1元)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013•浙江)已知a∈R,函數(shù)f(x)=x3﹣3x2+3ax﹣3a+3.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x∈[0,2]時,求|f(x)|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求的取值范圍,使在閉區(qū)間上是單調(diào)函數(shù);
(2)當(dāng)時,函數(shù)的最大值是關(guān)于的函數(shù).求;
(3)求實數(shù)的取值范圍,使得對任意的,恒有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)在區(qū)間內(nèi)的圖象大致為(  )

查看答案和解析>>

同步練習(xí)冊答案