3.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),則f(1)+f(2)+…+f(100)$=( 。
A.$-\sqrt{3}$B.$-2\sqrt{3}$C.0D.$\sqrt{3}$

分析 根據(jù)正切函數(shù)的性質(zhì)可得其周期T=$\frac{π}{\frac{π}{3}}=3$,依次求出f(1),f(2),f(3),由周期可得f(1)+f(2)+…+f(100)的值.

解答 解:∵f(n)=$tan\frac{nπ}{3}$,
根據(jù)正切函數(shù)的性質(zhì)可得其周期T=$\frac{π}{\frac{π}{3}}=3$,
∴f(1)=$\sqrt{3}$,f(2)=$-\sqrt{3}$,f(3)=0.
可得:f(1)=f(2)+f(3)=0.
∴f(1)+f(2)+…+f(100)=33[f(1)+f(2)+f(3)]+f(1)=f(1)=$\sqrt{3}$.
故選:D.

點評 本題主要考查正切函數(shù)的圖象和性質(zhì),周期函數(shù)的求和計算.屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,等邊△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,下列命題中,錯誤的是(  )
A.動點A′在平面ABC上的射影在線段AF上
B.恒有平面A′GF⊥平面BCED
C.三棱錐A′-EFD的體積有最大值
D.異面直線A′E與BD不可能垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一件工作可以用2種方法完成,有3人會用第1種方法完成,另外5人會用第2種方法完成,從中選出1人來完成這件工作,不同選法的種數(shù)是( 。
A.8B.15C.16D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角α的終邊與單位圓交于點$P(-\frac{{\sqrt{3}}}{2},-\frac{1}{2})$,則cosα的值為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出如下五個結(jié)論:
①y=sinx在第一象限內(nèi)是增函數(shù);     
②存在區(qū)間(a,b),使y=cosx為減函數(shù)而sinx<0;
③y=tanx在其定義域內(nèi)為增函數(shù);     
④y=cosx+sin($\frac{π}{2}$-x)既有最大值和最小值,又是偶函數(shù);
⑤y=sin|2x+$\frac{π}{6}$|的最小正周期為π.
其中正確結(jié)論的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義在實數(shù)域上的偶函數(shù)f(x)對于?x∈R,均滿足條件f(x+2)=f(x)+f(1),且當(dāng)x∈[2,3]時,f(x)=-2x2+12x-18,若函數(shù)y=f(x)-loga(|x|+1)在(0,+∞)上至少有5個零點,則a的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{3}}{3}$)C.(0,$\frac{\sqrt{5}}{5}$)D.(0,$\frac{\sqrt{6}}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x>-1},B={x|x2+2x-3<0}則A∩B=( 。
A.(-1,3)B.(-1,1)C.(-1,+∞)D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F(-c,0),離心率為e,橢圓過點P(-2,3)與Q($\frac{2}{e}$,0).
(1)求此橢圓的方程;
(2)設(shè)經(jīng)過點P的直線與圓O:x2+y2=28的交點為M、N,若PF=PM,求PN的長;
(3)設(shè)不經(jīng)過點P的直線l:y=kx+m與橢圓E交于兩點A、B,記直線PA與PB的斜率分別為k1、k2,且4k1k2+3=0,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某城市理論預(yù)測2000年到2004年人口總數(shù)與年份的關(guān)系如表所示
年份200x(年)01234
人口數(shù)y(十萬)5781119
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)此次估計2005年該城市人口總數(shù).
(參考公式:用最小二乘法求線性回歸方程系數(shù)的公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)

查看答案和解析>>

同步練習(xí)冊答案