【題目】在直角坐標(biāo)系中,曲線(xiàn)C的參數(shù)方程為(為參數(shù)),曲線(xiàn)上異于原點(diǎn)的兩點(diǎn),所對(duì)應(yīng)的參數(shù)分別為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)當(dāng)時(shí),直線(xiàn)平分曲線(xiàn),求的值;
(2)當(dāng)時(shí),若,直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng)為,求直線(xiàn)的方程.
【答案】(1)(2)或
【解析】
(1)求出直線(xiàn)的方程和曲線(xiàn)的直角坐標(biāo)方程,然后利用直線(xiàn)過(guò)點(diǎn)求出答案;
(2)由可算出,然后可設(shè)直線(xiàn)的方程為,然后根據(jù)直線(xiàn)被曲線(xiàn)截得的弦長(zhǎng)為建立方程求解即可.
(1)因?yàn)?/span>,所以.
所以直線(xiàn)的方程為.
曲線(xiàn)的方程可化為
因?yàn)橹本(xiàn)平分曲線(xiàn),所以直線(xiàn)過(guò)點(diǎn),
所以.
(2)由題意可知
曲線(xiàn)的方程為
設(shè)直線(xiàn)的方程為,圓心到直線(xiàn)的距離為
因?yàn)?/span>,所以
所以或,
所以直線(xiàn)的方程為或
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若對(duì)于任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(Ⅰ)判斷函數(shù)的單調(diào)性;
(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),若存在區(qū)間,使得在上的值域?yàn)?/span>,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】地球的公轉(zhuǎn)軌道可以看作是以太陽(yáng)為一個(gè)焦點(diǎn)的橢圓,根據(jù)開(kāi)普勒行星運(yùn)動(dòng)第二定律,可知太陽(yáng)和地球的連線(xiàn)在相等的時(shí)間內(nèi)掃過(guò)相等的面積,某同學(xué)結(jié)合物理和地理知識(shí)得到以下結(jié)論:①地球到太陽(yáng)的距離取得最小值和最大值時(shí),地球分別位于圖中點(diǎn)和點(diǎn);②已知地球公轉(zhuǎn)軌道的長(zhǎng)半軸長(zhǎng)約為千米,短半軸長(zhǎng)約為千米,則該橢圓的離心率約為.因此該橢圓近似于圓形:③已知我國(guó)每逢春分(月日前后)和秋分(月日前后),地球會(huì)分別運(yùn)行至圖中點(diǎn)和點(diǎn),則由此可知我國(guó)每年的夏半年(春分至秋分)比冬半年(當(dāng)年秋分至次年春分)要少幾天.以上結(jié)論正確的是( )
A.①B.①②C.②③D.①③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】斐波那契數(shù)列滿(mǎn)足: .若將數(shù)列的每一項(xiàng)按照下圖方法放進(jìn)格子里,每一小格子的邊長(zhǎng)為1,記前項(xiàng)所占的格子的面積之和為,每段螺旋線(xiàn)與其所在的正方形所圍成的扇形面積為,則下列結(jié)論錯(cuò)誤的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C的參數(shù)方程為(a或t為參數(shù)).以O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為ρ(cosθsinθ)=1.
(1)當(dāng)t為參數(shù),α時(shí),判斷曲線(xiàn)C與直線(xiàn)l的位置關(guān)系;
(2)當(dāng)α為參數(shù),t=2時(shí),直線(xiàn)l與曲線(xiàn)C交于A,B兩點(diǎn),設(shè)P(1,0),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣(mài)點(diǎn)餐逐漸成為越來(lái)越多用戶(hù)的餐飲消費(fèi)習(xí)慣,由此催生了一批外賣(mài)點(diǎn)餐平臺(tái).已知某外賣(mài)平臺(tái)的送餐費(fèi)用與送餐距離有關(guān)(該平臺(tái)只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取100名點(diǎn)外賣(mài)的用戶(hù)進(jìn)行統(tǒng)計(jì),按送餐距離分類(lèi)統(tǒng)計(jì)結(jié)果如表:
送餐距離(千米) | (0,1] | (1,2] | (2,3] | (3,4] | (4,5] |
頻數(shù) | 15 | 25 | 25 | 20 | 15 |
以這100名用戶(hù)送餐距離位于各區(qū)間的頻率代替送餐距離位于該區(qū)間的概率.
(1)若某送餐員一天送餐的總距離為100千米,試估計(jì)該送餐員一天的送餐份數(shù);(四舍五入精確到整數(shù),且同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表).
(2)若該外賣(mài)平臺(tái)給送餐員的送餐費(fèi)用與送餐距離有關(guān),規(guī)定2千米內(nèi)為短距離,每份3元,2千米到4千米為中距離,每份7元,超過(guò)4千米為遠(yuǎn)距離,每份12元.記X為送餐員送一份外賣(mài)的收入(單位:元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com