設(shè)f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí)f(x)的解析式為.
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(x)是R上的奇函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),
解答: 解:∵f(x)是R上的奇函數(shù),∴f(-x)=-f(x)
∵當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),
∴設(shè)x<0,則x>0,
f(x)=-f(-x)=x(1-x)
故:當(dāng)x∈R時(shí)f(x)的解析式為f(x)=
x(1+x),x≥0
x(1-x),x<0
點(diǎn)評(píng):本題考察了函數(shù)的性質(zhì)在求解析式中的應(yīng)用,屬于容易題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的定義域和值域
(1)y=
2+x
3-x
;
(2)y=x-
2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)既是奇函數(shù),又在區(qū)間[-1,1]上單調(diào)遞減的是( 。
A、f(x)=x
1
3
B、f(x)=ln
2-x
2+x
C、f(x)=-|x+1|
D、f(x)=
1
2
(ax+a-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)(0,5)到直線2x-y=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:x∈R,y∈R 定義運(yùn)算x※y=
x(x≤y)
y(x>y)
,若|2m-1|※m=|2m-1|,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,
1
3
B、(
1
3
,1)
C、[
1
3
,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log
1
2
x+(
1
2
)x
,若f(x2+3)<f(4x),則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于直線M,N與平面α,β,有以下四個(gè)命題:
①若m∥α,n∥β且α∥β,則m∥n   
②若m⊥α,n∥β且α∥β,則m⊥n
③若m⊥α,n⊥β且α∥β,則m∥n
④若m⊥α,n⊥β且α⊥β,則m⊥n
其中真命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若bc=20,S△ABC=5
3
,△ABC的外接圓半徑是
3
,則a等于( 。
A、5
B、4
3
C、3
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+2
-log8
(5-x)的定義域是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案