【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過原點且傾斜角為.以坐標(biāo)原點為極點,軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對稱.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線過原點且傾斜角為,設(shè)直線與曲線相交于,兩點,直線與曲線相交于,兩點,當(dāng)變化時,求面積的最大值.
【答案】(Ⅰ) (Ⅱ)
【解析】
(Ⅰ)法一:將化為直角坐標(biāo)方程,根據(jù)對稱關(guān)系用上的點表示出上點的坐標(biāo),代入方程得到的直角坐標(biāo)方程,再化為極坐標(biāo)方程;法二:將化為極坐標(biāo)方程,根據(jù)對稱關(guān)系將上的點用上的點坐標(biāo)表示出來,代入極坐標(biāo)方程即可得到結(jié)果;(Ⅱ)利用和的極坐標(biāo)方程與的極坐標(biāo)方程經(jīng)坐標(biāo)用表示,將所求面積表示為與有關(guān)的三角函數(shù)解析式,通過三角函數(shù)值域求解方法求出所求最值.
(Ⅰ)法一:由題可知,的直角坐標(biāo)方程為:,
設(shè)曲線上任意一點關(guān)于直線對稱點為,
所以
又因為,即,
所以曲線的極坐標(biāo)方程為:
法二:由題可知,的極坐標(biāo)方程為: ,
設(shè)曲線上一點關(guān)于 的對稱點為,
所以
又因為,即,
所以曲線的極坐標(biāo)方程為:
(Ⅱ)直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為:
設(shè),
所以解得,解得
因為:,所以
當(dāng)即時,,取得最大值為:
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在抽取彩票“雙色球”中獎號碼時,有33個紅色球,每個球的編號分別為01,02,…,33.一位彩民用隨機數(shù)表法選取6個號碼作為6個紅色球的編號,選取方法是從下面的隨機數(shù)表中第1行第6列的數(shù)字3開始,從左向右讀數(shù),則依次選出的第3個紅色球的編號為( )
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 |
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 |
A.21B.32C.09D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為迎接2022年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學(xué)生中隨機抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,,,,,,得到如圖所示的頻率分布直方圖.
(1)求的值;
(2)估計這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(3)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99.9%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年入冬以來,我市天氣反復(fù).在下圖中統(tǒng)計了我市上個月前15天的氣溫,以及相對去年同期的氣溫差(今年氣溫-去年氣溫,單位:攝氏度),以下判斷錯誤的是( )
A.今年每天氣溫都比去年氣溫低B.今年的氣溫的平均值比去年低
C.今年8-12號氣溫持續(xù)上升D.今年8號氣溫最低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,為的中點.
(I)若為上的一點,且與直線垂直,求的值;
(Ⅱ)在(I)的條件下,設(shè)異面直線與所成的角為45°,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)若,,判斷函數(shù)在上的單調(diào)性;
(2)令,,若,求證:方程無實根.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系,直線過點,且傾斜角為,以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與圓交于、兩點,若,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計,某地區(qū)植被覆蓋面積公頃與當(dāng)?shù)貧鉁叵陆档亩葦?shù)之間呈線性相關(guān)關(guān)系,對應(yīng)數(shù)據(jù)如下:
公頃 | 20 | 40 | 60 | 80 |
3 | 4 | 4 | 5 |
請用最小二乘法求出y關(guān)于x的線性回歸方程;
根據(jù)中所求線性回歸方程,如果植被覆蓋面積為300公頃,那么下降的氣溫大約是多少?
參考公式:線性回歸方程;其中,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com