已知二次函數(shù)f(x)=ax2+bx(a、b為常數(shù),且a≠0)滿足條件:f(x-1)=f(3-x),且方程f(x)=2x有等根.
(1)求f(x)的解析式;
(2)是否存在實數(shù)m、n(m<n),使f(x)定義域和值域分別為[m,n]和[4m,4n]?如果存在,求出m、n的值;如果不存在,說明理由.

(1)f(x)=-x2+2x(2)存在m=-1,n=0,滿足條件

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義域為的偶函數(shù).當(dāng)時,若關(guān)于的方程有且只有7個不同實數(shù)根,則的值是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

判斷下列函數(shù)的奇偶性:
(1)f(x)=x3
(2)f(x)=
(3)f(x)=(x-1);
(4)f(x)=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=,x∈[1,+∞).
(1)當(dāng)a=時,求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)V為全體平面向量構(gòu)成的集合,若映射f
V→R滿足:
對任意向量a=(x1,y1)∈Vb=(x2,y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),則稱映射f具有性質(zhì)p.
現(xiàn)給出如下映射:
f1V→R,f1(m)=xy,m=(xy)∈V;
f2V→R,f2(m)=x2y,m=(xy)∈V;
f3V→R,f3(m)=xy+1,m=(xy)∈V.
分析映射①②③是否具有性質(zhì)p.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在上的函數(shù)是偶函數(shù),且時, 。
(1)當(dāng)時,求解析式;
(2)當(dāng),求取值的集合;
(3)當(dāng),函數(shù)的值域為,求滿足的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)為偶函數(shù),求的值;
(Ⅱ)若,求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)時,若對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b為常數(shù),若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.

查看答案和解析>>

同步練習(xí)冊答案