(本小題滿分12分)如圖,已知三棱錐A—BPC中,AP⊥PC,AC⊥BC,M為AB中點,D為PB中點,且△PMB為正三角形。
(Ⅰ)求證:DM∥平面APC;
(Ⅱ)若BC=4,AB=20,求三棱錐D—BCM的體積。
(Ⅰ) 見解析 (Ⅱ)
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知
是直角梯形,
,
,
,
平面
.
(1) 證明:
;
(2) 在
上是否存在一點
,使得
∥平面
?若存在,找出點
,并證明:
∥平面
;若不存在,請說明理由;
(3)若
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,一個圓錐的底面半徑為2cm,高為 6cm,其中有一個高為
cm的內(nèi)接圓柱.
(1)試用
表示圓柱的側(cè)面積;(2)當
為何值時,圓柱的側(cè)面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知正方形
和矩形
所在的平面互相垂直,
,
,
是線段
的中點.
(Ⅰ)求三棱錐
的體積;
(Ⅱ)求證:
//平面
;
(Ⅲ)求異面直線
與
所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
兩個相同的正四棱錐組成如下圖1所示的幾何體,可放入棱長為1的正方體(圖2)內(nèi),使正四棱錐的底面ABCD與正方體的某一個面平行,且各頂點均在正方體的面上,則這樣的幾何體體積的可能值有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
以一個等邊三角形底邊所在的直線為對稱軸旋轉(zhuǎn)一周所得的幾何體是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖所示,在矩形ABCD中,AB=2BC=2a,E為AB上一點,將B點沿線段EC折起至點P,連接PA、PC、PD,取PD的中點F,若有AF∥平面PEC.
(1)試確定E點位置;
(2)若異面直線PE、CD所成的角為60°,并且PA的長度大于a,
求證:平面PEC⊥平面AECD.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
長方體的對角線長是4,有一條棱長為1,那么該長方體的最大體積為
查看答案和解析>>