已知A,B為拋物線y2=2x上兩動點(diǎn),O為坐標(biāo)原點(diǎn)且OA⊥OB,若直線AB的傾斜角為135°,則S△AOB=
2
5
2
5
分析:設(shè)出直線的方程與拋物線方程聯(lián)立根據(jù)韋達(dá)定理表示出x1+x2和x1x2的表達(dá)式,然后利用配方法求得|x1-x2|,進(jìn)而根據(jù)直線方程求得|y1-y2|,利用OA⊥OB垂直判斷出二直線的斜率的乘積為-1求得m,代入三角形面積公式求得答案.
解答:解:設(shè)直線AB的方程為y=x-m,
聯(lián)立
y2=2x
y=x-m
,得x2-(2m+2)x+m2=0,
則x1+x2=2m+2,x1x2=m2,
∴|x1-x2|=
(2m+2)2-4m2
=
8m+4
,
∵三角形的面積為S△AOB=|
1
2
my1-
1
2
my2|=
1
2
m(|x1-x2|)=
1
2
m•
8m+4
;
又因?yàn)镺A⊥OB,設(shè)A(x1
2x1
),B(x2,-
2x2
),
所以x1x2-2
x1x2
=0,即m2-2m=0,解得m=0(舍),或m=2,
代入上式可得S△AOB=
1
2
m•
8m+4
=
1
2
×2×
8×2+4
=2
5

故答案為:2
5
點(diǎn)評:本題主要考查了拋物線的應(yīng)用.考查了學(xué)生分析問題和解決實(shí)際問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
,
b
為非零向量,函數(shù)f(x)=(x
a
+
b
)•(
a
-x
b
)
,則使f(x)的圖象為關(guān)于y軸對稱的拋物線的一個必要不充分條件是( 。
A、
a
b
B、
a
b
C、|
a|
=|
b
|
D、
a
=
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是拋物線y2=4x上的兩點(diǎn),O是拋物線的頂點(diǎn),OA⊥OB.
(I)求證:直線AB過定點(diǎn)M(4,0);
(II)設(shè)弦AB的中點(diǎn)為P,求點(diǎn)P到直線x-y=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0=5,試用線段AB中點(diǎn)的縱坐標(biāo)表示線段AB的長度,并求出中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(文)已知A、B是拋物線y2=4x上的相異兩點(diǎn).
(1)設(shè)過點(diǎn)A且斜率為-1的直線l1,與過點(diǎn)B且斜率為1的直線l2相交于點(diǎn)P(4,4),求直線AB的斜率;
(2)問題(1)的條件中出現(xiàn)了這樣的幾個要素:已知圓錐曲線Γ,過該圓錐曲線上的相異兩點(diǎn)A、B所作的兩條直線l1、l2相交于圓錐曲線Γ上一點(diǎn);結(jié)論是關(guān)于直線AB的斜率的值.請你對問題(1)作適當(dāng)推廣,并給予解答;
(3)若線段AB(不平行于y軸)的垂直平分線與x軸相交于點(diǎn)Q(x0,0).若x0>2,試用x0表示線段AB中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B是拋物線x2=2py(p>0)上的兩個動點(diǎn),O為坐標(biāo)原點(diǎn),非零向量
OA
, 
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|

(Ⅰ)求證:直線AB經(jīng)過一定點(diǎn);
(Ⅱ)當(dāng)AB的中點(diǎn)到直線y-2x=0的距離的最小值為
2
5
5
時,求p的值.

查看答案和解析>>

同步練習(xí)冊答案