(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分. 第3小題滿(mǎn)分8分.
(理)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱(chēng)為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為正整數(shù),公比為正整數(shù)的無(wú)窮等比數(shù)列的子數(shù)列問(wèn)題. 為此,他任取了其中三項(xiàng).
(1) 若成等比數(shù)列,求之間滿(mǎn)足的等量關(guān)系;
(2) 他猜想:“在上述數(shù)列中存在一個(gè)子數(shù)列是等差數(shù)列”,為此,他研究了與的大小關(guān)系,請(qǐng)你根據(jù)該同學(xué)的研究結(jié)果來(lái)判斷上述猜想是否正確;
(3) 他又想:在首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列中是否存在成等比數(shù)列的子數(shù)列?請(qǐng)你就此問(wèn)題寫(xiě)出一個(gè)正確命題,并加以證明.
(1) ;(2)不成立;(3) 對(duì)于首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列,總可以找到一個(gè)無(wú)窮子數(shù)列,使得是一個(gè)等比數(shù)列.
【解析】
試題分析:(1)由已知可得:, 1分
則,即有, 3分
,化簡(jiǎn)可得. . 4分
(2) ,又,
故 , 6分
由于是正整數(shù),且,則,
又是滿(mǎn)足的正整數(shù),則,
,
所以,> ,從而上述猜想不成立. 10分
(3)命題:對(duì)于首項(xiàng)為正整數(shù),公差為正整數(shù)的無(wú)窮等差數(shù)列,總可以找到一個(gè)無(wú)窮子數(shù)列,使得是一個(gè)等比數(shù)列. 13分
此命題是真命題,下面我們給出證明.
證法一: 只要證明對(duì)任意正整數(shù)n,都在數(shù)列{an}中.因?yàn)閎n=a(1+d)n=a(1+d+d2+…+dn)=a(Md+1),這里M=+d+…+dn-1為正整數(shù),所以a(Md+1)=a+aMd是{an}中的第aM+1項(xiàng),證畢. 18分
證法二:首項(xiàng)為,公差為( )的等差數(shù)列為,考慮數(shù)列中的項(xiàng):
依次取數(shù)列中項(xiàng),,
,則由,可知,并由數(shù)學(xué)歸納法可知,數(shù)列為的無(wú)窮等比子數(shù)列. 18分
考點(diǎn):等比數(shù)列的簡(jiǎn)單性質(zhì);數(shù)列的綜合應(yīng)用。
點(diǎn)評(píng):此題考查了等差數(shù)列的性質(zhì)即通項(xiàng)公式,同時(shí)本題屬于新定義及結(jié)論探索性問(wèn)題,這類(lèi)試題的一般解法是:充分抓住已知條件,找準(zhǔn)問(wèn)題的突破點(diǎn),由淺入深,多角度、多側(cè)面探尋,聯(lián)系符合題設(shè)的有關(guān)知識(shí),合理組合發(fā)現(xiàn)新結(jié)論,圍繞所探究的結(jié)論環(huán)環(huán)相扣,步步逼近發(fā)現(xiàn)規(guī)律,得出結(jié)論.熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分18分,第(1)小題6分,第(2)小題6分,第(3)小題6分)
若數(shù)列滿(mǎn)足:是常數(shù)),則稱(chēng)數(shù)列為二階線(xiàn)性遞推數(shù)列,且定義方程為數(shù)列的特征方程,方程的根稱(chēng)為特征根; 數(shù)列的通項(xiàng)公式均可用特征根求得:
①若方程有兩相異實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));
②若方程有兩相同實(shí)根,則數(shù)列通項(xiàng)可以寫(xiě)成,(其中是待定常數(shù));
再利用可求得,進(jìn)而求得.
根據(jù)上述結(jié)論求下列問(wèn)題:
(1)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(2)當(dāng),()時(shí),求數(shù)列的通項(xiàng)公式;
(3)當(dāng),()時(shí),記,若能被數(shù)整除,求所有滿(mǎn)足條件的正整數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011屆上海市盧灣區(qū)高三上學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分8分,第3小題滿(mǎn)分6分.
已知負(fù)數(shù)和正數(shù),且對(duì)任意的正整數(shù)n,當(dāng)≥0時(shí), 有[, ]=
[, ];當(dāng)<0時(shí), 有[, ]= [, ].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證;
(3)是否存在,使得數(shù)列為常數(shù)數(shù)列?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省濟(jì)寧市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分18分)已知拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸正半軸上,點(diǎn)到其準(zhǔn)線(xiàn)的距離等于5.
(Ⅰ)求拋物線(xiàn)C的方程;
(Ⅱ)如圖,過(guò)拋物線(xiàn)C的焦點(diǎn)的直線(xiàn)從左到右依次與拋物線(xiàn)C及圓交于A、C、D、B四點(diǎn),試證明為定值;
(Ⅲ)過(guò)A、B分別作拋物C的切線(xiàn)且交于點(diǎn)M,求與面積之和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市青浦區(qū)高三上學(xué)期期終學(xué)習(xí)質(zhì)量調(diào)研測(cè)試數(shù)學(xué)試卷 題型:解答題
(本題滿(mǎn)分18分) 本題共有3個(gè)小題,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題滿(mǎn)分8分.
設(shè),對(duì)于項(xiàng)數(shù)為的有窮數(shù)列,令為中最大值,稱(chēng)數(shù)列為的“創(chuàng)新數(shù)列”.例如數(shù)列3,5,4,7的創(chuàng)新數(shù)列為3,5,5,7.
考查自然數(shù)的所有排列,將每種排列都視為一個(gè)有窮數(shù)列.
(1)若,寫(xiě)出創(chuàng)新數(shù)列為3,4,4,4的所有數(shù)列;
(2)是否存在數(shù)列的創(chuàng)新數(shù)列為等比數(shù)列?若存在,求出符合條件的創(chuàng)新數(shù)列;若不存在,請(qǐng)說(shuō)明理由.
(3)是否存在數(shù)列,使它的創(chuàng)新數(shù)列為等差數(shù)列?若存在,求出滿(mǎn)足所有條件的數(shù)列的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題
(本題滿(mǎn)分18分,其中第1小題6分,第2小題6分,第3小題6分)
已知數(shù)列的首項(xiàng)為1,前項(xiàng)和為,且滿(mǎn)足,.?dāng)?shù)列滿(mǎn)足.
(1) 求數(shù)列的通項(xiàng)公式;
(2) 當(dāng)時(shí),試比較與的大小,并說(shuō)明理由;
(3) 試判斷:當(dāng)時(shí),向量是否可能恰為直線(xiàn)的方向向量?請(qǐng)說(shuō)明你的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com