分析 解:(1)分別消掉參數(shù)t與m可得直線(xiàn)l1與直線(xiàn)l2的普通方程為y=k(x-2)①與x=-2+ky②;聯(lián)立①②,消去k可得C的普通方程為x2-y2=4;
(2)將l3的極坐標(biāo)方程為ρ(cosθ+sinθ)-$\sqrt{2}$=0化為普通方程:x+y-$\sqrt{2}$=0,再與曲線(xiàn)C的方程聯(lián)立,可得$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,即可求得l3與C的交點(diǎn)M的極徑為ρ=$\sqrt{5}$.
解答 解:(1)∵直線(xiàn)l1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+t}\\{y=kt}\end{array}\right.$,(t為參數(shù)),
∴消掉參數(shù)t得:直線(xiàn)l1的普通方程為:y=k(x-2)①;
又直線(xiàn)l2的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+m}\\{y=\frac{m}{k}}\end{array}\right.$,(m為參數(shù)),
同理可得,直線(xiàn)l2的普通方程為:x=-2+ky②;
聯(lián)立①②,消去k得:x2-y2=4,即C的普通方程為x2-y2=4(x≠±2);
(2)∵l3的極坐標(biāo)方程為ρ(cosθ+sinθ)-$\sqrt{2}$=0,
∴其普通方程為:x+y-$\sqrt{2}$=0,
聯(lián)立$\left\{\begin{array}{l}{x+y=\sqrt{2}}\\{{x}^{2}{-y}^{2}=4}\end{array}\right.$得:$\left\{\begin{array}{l}{x=\frac{3\sqrt{2}}{2}}\\{y=-\frac{\sqrt{2}}{2}}\end{array}\right.$,
∴ρ2=x2+y2=$\frac{18}{4}$+$\frac{2}{4}$=5.
∴l(xiāng)3與C的交點(diǎn)M的極徑為ρ=$\sqrt{5}$.
點(diǎn)評(píng) 本題考查參數(shù)方程與極坐標(biāo)方程化普通方程,考查函數(shù)與方程思想與等價(jià)轉(zhuǎn)化思想的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -80 | B. | -40 | C. | 40 | D. | 80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 12 | C. | 14 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12種 | B. | 18種 | C. | 24種 | D. | 36種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com