19.設(shè)a,b,c是空間的三條直線,給出以下三個(gè)命題:
①若a⊥b,b⊥c,則a⊥c;
②若a和b共面,b和c共面,則a和c也共面;
③若a∥b,b∥c,則a∥c.
其中正確命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 ①若a⊥b,b⊥c,則a⊥c,由線線的位置關(guān)系判斷;
②若a和b共面,b和c共面,則a和c也共面,由線線位置關(guān)系判斷;
③若a∥b,b∥c,則a∥c,由平行的傳遞性判斷

解答 解:①若a⊥b,b⊥c,則a⊥c,垂直于同一直線的兩條直線相交、平行、異面皆有可能,故命題不正確;
②若a和b共面,b和c共面,則a和c也共面,線線間共面關(guān)系不具有傳遞性,a∥b,b與c相交,則a,c可以是異面關(guān)系,故命題不正確;
③若a∥b,b∥c,則a∥c,此是空間兩直線平行公理,是正確命題.
故選:B.

點(diǎn)評(píng) 本題考查空間中直線與平面之間的位置關(guān)系的判斷,主要考查空間想像能力,空間中線面、線線位置關(guān)系的判斷力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知等比數(shù)列{an}中,a1=2,an>0,函數(shù)f(x)=x(x-a1)(x-a2)…(x-a8),且f′(0)=236
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,b1=1,點(diǎn)(Tn+1,Tn)在直線-=上,若存在n∈N+,使不等式$\frac{2_{1}}{{a}_{1}}$+$\frac{2_{2}}{{a}_{2}}$+…+$\frac{2_{n}}{{a}_{n}}$≥m成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若α是第四象限角,則π+α是第二象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.用數(shù)學(xué)歸納法證明“-1+3-5+…+(-1)n(2n-1)=(-1)nn”,假設(shè)當(dāng)n=k時(shí)成立,則當(dāng)n=k+1時(shí),等式的左邊增加的項(xiàng)為(  )
A.(-1)k(2k-1)B.-(-1)k(2k-1)C.-(-1)k+1(2k+1)D.(-1)k+1(2k+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.將3名男生和4名女生排成一行,甲、乙兩人必須站在兩頭,則不同的排列方法共有(  )種.
A.120B.200C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{2}}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2+ax+b(a,b∈R)一個(gè)零點(diǎn)為-2,當(dāng)x∈[0,4]時(shí)最大值為0.
(1)求a,b的值;
(2)若對(duì)x>3,不等式f(x)>(m+2)x-m-15恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.圓C1:x2+y2=1與圓C2:(x-1)2+(y+1)2=4有2條公切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.將1、$\sqrt{2}$、$\sqrt{3}$、$\sqrt{6}$按如圖所示的方式排列,若規(guī)定(m,n)表示第m排從左往右第n個(gè)數(shù),則(7,5)表示的數(shù)是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案