14.已知α∈(π,2π),cosα=-$\frac{\sqrt{5}}{5}$,則tan2α的值為(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

分析 利用同角三角函數(shù)的基本關(guān)系,求得sinα的值,可得tanα的值,再利用二倍角的正切公式求得tan2α的值.

解答 解:∵α∈(π,2π),cosα=-$\frac{\sqrt{5}}{5}$,∴α為第三象限角,故sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{2\sqrt{5}}{5}$,
∴tanα=$\frac{sinα}{cosα}$=2,∴tan2α=$\frac{2tanα}{1{-tan}^{2}α}$=-$\frac{4}{3}$,
故選:D.

點(diǎn)評 本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,二倍角的正切公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f( x)=ax3-bx+c為奇函數(shù),則c=( 。
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在平面直角坐標(biāo)系中,以原點(diǎn)為圓心,單位長度為半徑的圓上有兩點(diǎn)A($\frac{4}{5}$,$\frac{3}{5}$),B($\frac{5}{13}$,$\frac{12}{13}$).
(Ⅰ)求$\overrightarrow{OA}$,$\overrightarrow{OB}$夾角的余弦值;
(Ⅱ)已知C(1,0),記∠AOC=α,∠BOC=β,求tan$\frac{α+β}{2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且點(diǎn)(1,$\frac{3}{2}$)在橢圓E上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m(k,m∈R)與橢圓E只有一個(gè)公共點(diǎn)P.
(1)用實(shí)數(shù)k,m表示點(diǎn)P的坐標(biāo);
(2)若動(dòng)直線l與直線x=4相交于點(diǎn)Q,問:在x軸上是否存在定點(diǎn)M,使得MP⊥MQ?若存在,求出定點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(2,-1,2),$\overrightarrow$=(1,m,n),若$\overrightarrow{a}$∥$\overrightarrow$,則m+n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列命題:
①等軸雙曲線的漸近線是y=±x;
②在△ABC中,“若A=B,則sinA=sinB“的逆命題為真命題;
③若動(dòng)點(diǎn)P到兩定點(diǎn)F1(-4,0),F(xiàn)2(4,0)的距離之和為8,則動(dòng)點(diǎn)P的軌跡為橢圓;
④數(shù)列{an}滿足an2=an-1an+1(n≥2,n∈N),則{an}為等比數(shù)列;
⑤在△ABC中,若c=2bcosA,則△ABC是等邊三角形.
其中正確命題的序號是②⑤(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若函數(shù)f(x)=x-2sinxcosx+acosx在[$\frac{π}{4}$,$\frac{3π}{4}$]單調(diào)遞增,則a的取值范圍是( 。
A.[-3,+∞)B.(-∞,-3]C.[$\sqrt{2}$,+∞)D.(-∞,$\sqrt{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.將函數(shù)$y=2sin(3x-\frac{π}{2})$的圖象向左平移φ(φ>0)個(gè)單位后,所得到的圖象對應(yīng)的函數(shù)為奇函數(shù),則φ的最小值為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|y=$\sqrt{x-1}$},集合B={x|2x-x2>0},則(∁RA)∩B等于(
A.(0,2)B.[1,2)C.(0,1)D.

查看答案和解析>>

同步練習(xí)冊答案