若函數(shù)f(x)=ax2-(a+2)x+1在區(qū)間(-2,-1)上恰有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,分a的取值討論,從而求a的取值范圍.
解答: 解:①當(dāng)a=0時(shí),-2x+1=0,故x=
1
2
;
②當(dāng)a<0時(shí),函數(shù)f(x)=ax2-(a+2)x+1的零點(diǎn)一正一負(fù),
故f(-2)•f(-1)=(6a+5)(2a+3)<0,
故-
3
2
<a<-
5
6
;
③當(dāng)a>0時(shí),ax2-(a+2)x+1=0的兩根為正值,
故函數(shù)f(x)=ax2-(a+2)x+1在區(qū)間(-2,-1)上沒(méi)有零點(diǎn),
綜上所述,-
3
2
<a<-
5
6

故答案為:-
3
2
<a<-
5
6
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

沙漏是古代的一種計(jì)時(shí)裝置,它由兩個(gè)形狀完全相同的容器和一個(gè)狹窄的連接管道組成,開(kāi)始時(shí)細(xì)沙全部在上部容器中,細(xì)沙通過(guò)連接管道全部流到下部容器所需要的時(shí)間稱(chēng)為該沙漏的一個(gè)沙時(shí).如圖,某沙漏由上下兩個(gè)圓錐組成,圓錐的底面直徑和高均為8cm,細(xì)沙全部在上部時(shí),其高度為圓錐高度的
2
3
(細(xì)管長(zhǎng)度忽略不計(jì)).
(1)如果該沙漏每秒鐘漏下0.02cm3的沙,則該沙漏的一個(gè)沙時(shí)為多少秒(精確到1秒)?
(2)細(xì)沙全部漏入下部后,恰好堆成個(gè)一蓋住沙漏底部的圓錐形沙堆,求此錐形沙堆的高度(精確到0.1cm).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):當(dāng)
2
<α<2π時(shí),
1
2
+
1
2
1
2
+
1
2
cos2α
;
(2)求值:tan10°+tan50°+
3
tan10°tan50°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
3
)(x∈R,ω>0)的最小正周期為π,將y=f(x)圖象向左平移φ個(gè)單位長(zhǎng)度(0<φ<
π
2
)所得圖象關(guān)于y軸對(duì)稱(chēng),則φ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,其中a2=2,a5=16,則
S2n+Sn+18
2n
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求滿(mǎn)足2x(2sinx-
3
)≥0,x∈(0,2π)的角α的集合(  )
A、(0,
π
3
B、[
π
3
,
3
]
C、[
π
3
,
π
2
]
D、[
π
2
,
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)在定義域(-1,1)上是增函數(shù)且為奇函數(shù),且f(t-1)+f(2t-1)<0,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos(-
π
4
)-sin(-
π
4
)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2cos230°-1的值為( 。
A、-
1
2
B、
1
2
C、
2
2
D、
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案