如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線的焦點(diǎn),而且它被該雙曲線的右準(zhǔn)線分成弧長為2:1的兩段圓弧,那么該雙曲線的離心率e等于( )
A.
B.
C.
D.
【答案】分析:由題設(shè)條件可知,圓的方程為x2+y2=c2,雙曲線的右準(zhǔn)線的方程是,再由圓被該雙曲線的右準(zhǔn)線分成弧長為2:1的兩段圓弧,可以推導(dǎo)出雙曲線的離心率e.
解答:解:圓的方程為x2+y2=c2,右準(zhǔn)線的方程是
它與圓在第一象限的交點(diǎn)記為P.由題意可得,
直線OP的方程為.將
代入x2+y2=c2,有c2=2a2,即.故選A.
點(diǎn)評(píng):本題考查圓的方程、雙曲線的準(zhǔn)線方程和離心率,解題要認(rèn)真審題,仔細(xì)作答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點(diǎn),而且它被該雙曲線的右準(zhǔn)線分成弧長為2:1的兩段圓弧,那么該雙曲線的離心率e等于( 。
A、
2
B、
3
C、
5
2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點(diǎn),而被該雙曲線的右準(zhǔn)線分成弧長為2:1的兩段圓弧,則該雙曲線的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的頂點(diǎn),并且被雙曲線的右準(zhǔn)線分成弧長之比為3:1的兩段弧,則雙曲線的離心率為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的頂點(diǎn),并且被直線x=
a2
c
(c為雙曲線的半焦距)分為弧長為3:1的兩段弧,則該雙曲線的離心等于…( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果以原點(diǎn)為圓心的圓經(jīng)過雙曲線-=1(a>0,b>0)的焦點(diǎn),而且被該雙曲線的右準(zhǔn)線分成的弧長為2∶1的兩段圓弧,那么該雙曲線的離心率e等于

A.                 B.                  C.              D.

查看答案和解析>>

同步練習(xí)冊(cè)答案