已知四棱錐的底面是平行四邊形,,,面,
且.若為中點(diǎn),為線段上的點(diǎn),且.
(1)求證:平面;
(2)求PC與平面PAD所成角的正弦值.
(1)詳見解析;(2).
解析試題分析:(1)連結(jié)BD交AC于O,取PF中點(diǎn)G,連結(jié)OF,BG,EG,利用EO,EG分別為BG,F(xiàn)C的中位線,得到它們對應(yīng)平行,進(jìn)而得到平面BEG與平面ACF平行,再由面面平行的性質(zhì)得到線面平行.
(2)要求線面角,需要先找到線面角的代表角,即過C點(diǎn)做面PAD的垂線,因?yàn)镻A垂直于底面,所以過C作線段AD的垂線與AD交于H,則CH垂直于面PAD,所以角CPH即為線面角的代表角,要求該角的正弦值,就需要求出PC與CH,可以利用△PAC和△ACH為直角三角形通過勾股定理求出,進(jìn)而得到線面角的正弦值.
解:(1)證明1:連接BD交AC于點(diǎn)O,取中點(diǎn),連接、、.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/3/14mny3.png" style="vertical-align:middle;" />、分別是、的中點(diǎn), 所以,
又 ,所以 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e6/8/xdfpf.png" style="vertical-align:middle;" />、分別是、的中點(diǎn),
所以,同理可得 4分
又 所以,平面平面.
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/02/e/kxewa.png" style="vertical-align:middle;" />平面,故平面. 6分
證明2:作AH垂直BC交BC于H
建立如圖的空間直角坐標(biāo)系O-XYZ,
令A(yù)D=PA=2,則AB=1
所以
為中點(diǎn), 所以 2分
設(shè)面AFC的一個(gè)法向量,又
由,
所以
令 4分
所以
所以 故平面. 6分
(2)解1:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0f/b/1v3qh4.png" style="vertical-align:middle;" />,,所以.
過C作AD的垂線,垂足為H,則,,所以平面PAD.
故為PC與平面PAD所成的角. 9分
設(shè),則,,,
所以,即為所求. 12分
解2:作AH垂直BC交BC于H,建立如圖的空間直角坐標(biāo)系O-XYZ,
令A(yù)D=PA=2,則AB=1,所以 8
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•重慶)如圖,在四面體ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1
(Ⅰ)求四面體ABCD的體積;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)證明:PA⊥BD;
(2)若PD=AD,求二面角A-PB-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,,, 為的中點(diǎn).
(1)求直線與所成角的余弦值;
(2)在側(cè)面內(nèi)找一點(diǎn),使面,并求出點(diǎn)到和的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐P—ABCD中,PD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=2,PD=,M為棱PB的中點(diǎn).
(1)證明:DM平面PBC;
(2)求二面角A—DM—C的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com