【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該新產(chǎn)品在某網(wǎng)店試銷一個階段后得到銷售單價和月銷售量之間的一組數(shù)據(jù),如下表所示:
銷售單價(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月銷售量(萬件) | 11 | 10 | 8 | 6 | 5 |
(1)根據(jù)統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程,并預(yù)測月銷售量不低于12萬件時銷售單價的最大值;
(2)生產(chǎn)企業(yè)與網(wǎng)店約定:若該新產(chǎn)品的月銷售量不低于10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店1萬元;若月銷售量不低于8萬件且不足10萬件,則生產(chǎn)企業(yè)獎勵網(wǎng)店5000元;若月銷售量低于8萬件,則沒有獎勵.現(xiàn)用樣本估計總體,從上述5個銷售單價中任選2個銷售單價,下個月分別在兩個不同的網(wǎng)店進(jìn)行銷售,求這兩個網(wǎng)店下個月獲得獎勵的總額的分布列及其數(shù)學(xué)期望.
參考公式:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.
參考數(shù)據(jù):,.
【答案】(1);月銷售量不低于12萬件時銷售單價的最大值為;(2)分布列見詳解,數(shù)學(xué)期望為.1(萬元).
【解析】
(1)先計算的平均數(shù),根據(jù)已知公式,代值計算即可;再根據(jù)所求方程,解不等式即可;
(2)根據(jù)題意,求得的可取值,結(jié)合題意求得分布列,再根據(jù)分布列求數(shù)學(xué)期望即可.
(1)容易知;;
又因?yàn)?/span>,,
故可得,
,
故所求回歸直線方程為:.
令,故可得.
故月銷售量不低于12萬件時銷售單價的最大值為.
(2)容易知可取值為:,(單位為:萬元)
故,,
,.
.
故其分布列如下所示:
則(萬元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)求的解析式;
(2)求時,的值域:
(3)設(shè),若對任意的,總有恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入(單位:萬元)與獲得的利潤(單位:千元)的數(shù)據(jù),如表所示
資金投入 | 2 | 3 | 4 | 5 |
利潤 | 2 | 3 | 5 | 6 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)該產(chǎn)品的資金投入每增加萬元,獲得利潤預(yù)計可增加多少千元?若投入資金萬元,則獲得利潤的估計值為多少千元?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線:(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線的交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在第二屆烏鎮(zhèn)互聯(lián)網(wǎng)大會中, 為了提高安保的級別同時又為了方便接待,現(xiàn)將其中的五個參會國的人員安排酒店住宿,這五個參會國要在、、三家酒店選擇一家,且每家酒店至少有一個參會國入住,則這樣的安排方法共有
A.種B.種
C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(1)求橢圓的標(biāo)準(zhǔn)方程和離心率;
(2)是否存在過點(diǎn)的直線與橢圓相交于,兩點(diǎn),且滿足.若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
若是函數(shù)的極值點(diǎn),求曲線在點(diǎn)處的切線方程;
若函數(shù)在區(qū)間上為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
設(shè)m,n為正實(shí)數(shù),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點(diǎn).
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,四邊形為菱形,四邊形為梯形,且,,,,M為線段的中點(diǎn).
(1)求證:平面;
(2)求平面將多面體分成的兩個部分的體積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com