Processing math: 85%
19.已知角A是△ABC的內(nèi)角,則“cosA=12”是“sinA=32的充分不必要條件(填“充分非必要”、“必要非充分”、“充要條件”、“既非充分又非必要”之一).

分析 根據(jù)充分必要條件的定義以及三角函數(shù)值判斷即可.

解答 解:A為△ABC的內(nèi)角,則A∈(0,180°),
若命題p:cosA=12成立,則A=60°,sinA=32
 而命題q:sinA=32成立,又由A∈(0,180°),則A=60°或120°;
因此由p可以推得q成立,由q推不出p,
可見p是q的充分不必要條件.
故答案為:充分不必要.

點(diǎn)評 本題三角函數(shù)值為載體,考查了充分必要條件的判斷,屬于基礎(chǔ)題.訓(xùn)練掌握三角形內(nèi)角的正、余弦函數(shù)符號(hào)與特殊角的三角函數(shù)值,是解決此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓Cx24+y29=1,動(dòng)直線ly=32x+m
(1)若動(dòng)直線l與橢圓C相交,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)動(dòng)直線l與橢圓C相交時(shí),證明:這些直線被橢圓截得的線段的中點(diǎn)都在直線3x+2y=0上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知一個(gè)底面置于水平面上的圓錐,其左視圖是邊長為6的正三角形,則該圓錐的側(cè)面積為18π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓錐的母線l=10,母線與旋轉(zhuǎn)軸的夾角α=30°,則圓錐的表面積為75π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an},{bn}滿足2Sn=(an+2)bn,其中Sn是數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是首項(xiàng)為23,公比為-13的等比數(shù)列,求數(shù)列{bn}的通項(xiàng)公式;
(2)若bn=n,a2=3,求證:數(shù)列{an}滿足an+an+2=2an+1,并寫出數(shù)列{an}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=ann,
求證:數(shù)列{cn}中的任意一項(xiàng)總可以表示成該數(shù)列其他兩項(xiàng)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.當(dāng)實(shí)數(shù)x,y滿足x2+y2=1時(shí),|x+2y+a|+|3-x-2y|的取值與x,y均無關(guān),則實(shí)數(shù)a的取范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知二次函數(shù)f(x)=ax2-4x+c的值域?yàn)閇0,+∞).
(1)判斷此函數(shù)的奇偶性,并說明理由;
(2)判斷此函數(shù)在[2a,+∞)的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;
(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測,當(dāng)前臺(tái)風(fēng)中心位于城市A(看做一點(diǎn))的東偏南θ角方向({cosθ=\frac{{\sqrt{2}}}{10}}),300km的海面P處,并以20km/h的速度向西偏北45°方向移動(dòng).臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增大.
(1)問10小時(shí)后,該臺(tái)風(fēng)是否開始侵襲城市A,并說明理由;
(2)城市A受到該臺(tái)風(fēng)侵襲的持續(xù)時(shí)間為多久?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=2x,且f(x-1)=\frac{1}{g(x)}+1(x≠1),則g(x)的值域是( �。�
A.(-∞,-1)B.(-∞,-1)∪(0,+∞)C.(-1,+∞)D.(-1,0)∪(0,+∞)

查看答案和解析>>

同步練習(xí)冊答案