【題目】已知曲線上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線交曲線兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求曲線的方程;

2)若不過點(diǎn)且不平行于坐標(biāo)軸,記線段的中點(diǎn)為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點(diǎn),求面積的最大值,以及取最大值時(shí)直線的方程.

【答案】12)證明見解析;(3

【解析】

1)利用橢圓的定義可知曲線為的橢圓,直接寫出橢圓的方程.

2)設(shè)直線,設(shè),聯(lián)立直線方程與橢圓方程,通過韋達(dá)定理求解KOM,然后推出直線OM的斜率與的斜率的乘積為定值.

3)設(shè)直線方程是與橢圓方程聯(lián)立,根據(jù)面積公式,代入根與系數(shù)的關(guān)系,利用換元和基本不等式求最值.

1)由題意知曲線是以原點(diǎn)為中心,長軸在軸上的橢圓,

設(shè)其標(biāo)準(zhǔn)方程為,則有

所以, .

2)證明:設(shè)直線的方程為,

設(shè)

則由 可得,即

, ,

,

直線的斜率與 的斜率的乘積=為定值

3)點(diǎn)

可得,

,解得

設(shè)

當(dāng)時(shí),取得最大值.

此時(shí),即

所以直線方程是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且 ,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2

(1)證明:AG∥平面BDE;
(2)求平面BDE和平面BAG所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sinωx(ω>0),將f(x)的圖象向左平移 個(gè)單位從長度后,所得圖象與原函數(shù)的圖象重合,則ω的最小值為(
A.
B.3
C.6
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次抽樣調(diào)查中測得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請用相關(guān)系數(shù)加以說明之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測當(dāng)時(shí),對應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:x2=2py(p>0),點(diǎn)A(p, )到拋物線C1的準(zhǔn)線的距離為2.
(1)求拋物線C1的方程;
(2)過點(diǎn)A作圓C2:x2+(y﹣a)2=1的兩條切線,分別交拋物線于M,N兩點(diǎn),若直線MN的斜率為﹣1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象上各點(diǎn)橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變)得到函數(shù)gx)的圖象,則下列說法不正確的是()

A.函數(shù)gx)的圖象關(guān)于點(diǎn)對稱

B.函數(shù)gx)的周期是

C.函數(shù)gx)在上單調(diào)遞增

D.函數(shù)gx)在上最大值是1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明,則當(dāng)時(shí),等式左邊應(yīng)在的基礎(chǔ)上加上( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響.

(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;

(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,2a9a12+13,a37,其前n項(xiàng)和為Sn

1)求數(shù)列{an}的通項(xiàng)公式;

2)求數(shù)列{}的前n項(xiàng)和Tn,并證明Tn

查看答案和解析>>

同步練習(xí)冊答案