函數(shù)y=
x+2
x-1
的單調(diào)減區(qū)間和圖象的對稱中心分別為( 。
A、(-∞,0),(0,+∞),(1,1)
B、(-∞,-1),(-1,+∞),(1,0)
C、(-∞,1),(1,+∞),(1,0)
D、(-∞,1),(1,+∞),(1,1)
考點(diǎn):函數(shù)的單調(diào)性及單調(diào)區(qū)間
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由圖象直接寫出函數(shù)的單調(diào)區(qū)間;寫出函數(shù)y=
1
x
的對稱中心然后根據(jù)平移得到函數(shù)y=
x+2
x-1
的對稱中心,
解答: 解:∵y=
x+2
x-1
=1+
3
x-1
,x≠1
畫出函數(shù)的圖象如圖所示,
由圖象可知函數(shù)的單調(diào)減區(qū)間是(-∞,1),(1,+∞),
∵y=
1
x
的對稱中心為(0,0)
∴.y=
x+2
x-1
=1+
3
x-1
的圖象時由y=
1
x
的圖象先向右平移一個單位,再向上平移1個單位得到的,
故對稱中心為(1,1)
故選:D
點(diǎn)評:本題考查了函數(shù)的圖象的變化問題,根據(jù)函數(shù)圖象的變化,由熟悉的反比例函數(shù)圖象得到題中分式函數(shù)的圖象,從而得到函數(shù)的值域、單調(diào)區(qū)間和對稱性,解答此題的關(guān)鍵是對函數(shù)解析式的變形,書寫單調(diào)區(qū)間時學(xué)生容易取并集而出錯,此題是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在四邊形ABCD中∠ABC=∠BCD=∠CDA=∠DAB=90°,求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x+
1
x-3
(x>3),則f(x)的最小值為(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知二次函數(shù)f(x)滿足條件f(0)=1及f(x+1)-f(x)=2x,求f(x);
(2)若f(x)滿足關(guān)系式f(x)+2f(
1
x
)=3x,求f(x)的解析式;
(3)f(x+1)=x2+4x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P使|PM|-|PN|=6,則稱該直線為“單曲型直線”,下列直線中是“單曲型直線”的是( 。
①y=x+1;    ②y=2;   ③y=
4
3
x;   ④y=2x+1.
A、①③B、①②C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足x+2y=2,則2x+4y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x+3)=f(x),當(dāng)0<x≤1時,f(x)=2x,則f (2015)=(  )
A、2
B、-2
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=ax(a>0,a≠1﹚在區(qū)間[-1,2]上的最大值為4,最小值為m,且函數(shù)g(x)=(1-4m)x2在[0,+∞)內(nèi)是增函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(m,1)到直線3x+4y=0的距離大于1,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案