【題目】求過(guò)兩圓x2+y2-x-y-2=0與x2+y2+4x-8y-8=0的交點(diǎn)和點(diǎn)(3,1)的圓的方程.
【答案】x2+y2-x+y+2=0
【解析】設(shè)所求圓的方程為(x2+y2-x-y-2)+λ(x2+y2+4x-4y-8)=0(λ≠-1),將(3,1)代入得λ=-,故所求圓的方程為x2+y2-x+y+2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于定義域?yàn)閇0,1]的函數(shù)f(x),如果同時(shí)滿(mǎn)足以下三個(gè)條件:
①對(duì)任意的x∈[0,1],總有f(x)≥0
②f(1)=1
③若x1≥0,x2≥0,x1+x2≤1,都有f(x1+x2)≥f(x1)+f(x2) 成立;則稱(chēng)函數(shù)f(x)為理想函數(shù).試證明下列三個(gè)命題:
(1)若函數(shù)f(x)為理想函數(shù),則f(0)=0;
(2)函數(shù)f(x)=2x﹣1(x∈[0,1])是理想函數(shù);
(3)若函數(shù)f(x)是理想函數(shù),假定存在x0∈[0,1],使得f(x0)∈[0,1],且f[f(x0)]=x0,則f(x0)=x0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|,g(x)=﹣|x+3|+m.
(1)當(dāng)m=7時(shí),解關(guān)于x的不等式f(x)﹣g(x)>0;
(2)若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0},求a取何值時(shí),A∩B≠與A∩C=同時(shí)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|x2-2x=0},B={0,1,2},則A∩B=( )
A. {0} B. {0,1}
C. {0,2} D. {0,1,2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解凱里地區(qū)的中小學(xué)生視力情況,擬從凱里地區(qū)的中小學(xué)生中抽取部分學(xué)生進(jìn)行調(diào)查,事先已了解到凱里地區(qū)小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是( )
A.簡(jiǎn)單隨機(jī)抽樣 B.按性別分層抽樣
C.按學(xué)段分層抽樣 D.系統(tǒng)抽樣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“若一個(gè)數(shù)是負(fù)數(shù),則它的平方是正數(shù)”的逆命題是( )
A.“若一個(gè)數(shù)是負(fù)數(shù),則它的平方不是正數(shù).”
B.“若一個(gè)數(shù)的平方是正數(shù),則它是負(fù)數(shù).”
C.“若一個(gè)數(shù)不是負(fù)數(shù),則它的平方不是正數(shù).”
D.“若一個(gè)數(shù)的平方不是正數(shù),則它不是負(fù)數(shù).”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】cos 17°等于( )
A.cos 20°cos 3°-sin 20°sin 3°
B.cos 20°cos 3°+sin 20°sin 3°
C.sin 20°sin 3°-cos 20°cos 3°
D.cos 20°sin 20°+sin 3°cos 3°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面三種說(shuō)法:
①一個(gè)平面內(nèi)只有一對(duì)不共線(xiàn)的向量可作為表示該平面內(nèi)所有向量的基底;
②一個(gè)平面內(nèi)有無(wú)數(shù)對(duì)不共線(xiàn)的向量可作為表示該平面內(nèi)所有向量的基底;
③零向量不可以作為基底中的向量,其中正確命題的序號(hào)是( )
A.①② B.②③
C.①③ D.①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com