Sn=1+2
1
2
+3
1
4
+…+n
1
2n-1
,則sn=
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:利用分組求和法進行求解即可.
解答: 解:Sn=1+2
1
2
+3
1
4
+…+n
1
2n-1
=(1+2+3+…+n)+(
1
2
+
1
4
+…+
1
2n-1

=
n(n+1)
2
+
1
2
•[1-(
1
2
)n-1]
1-
1
2
=
n(n+1)
2
+1-
1
2n-1
,
故答案為:
n(n+1)
2
+1-
1
2n-1
點評:本題主要考查數(shù)列求和的計算,利用分組求和法將數(shù)列轉(zhuǎn)化為等比數(shù)列和等差數(shù)列是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若6x3-3x2-x-1=a(2x-3)3+b(2x-3)2+c(2x-3)+d,求a-b+c-d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=acosx+xsinx,x∈[-
π
2
π
2
]

(Ⅰ)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(Ⅱ)求集合A={x|f(x)=0}中元素的個數(shù);
(Ⅲ)當1<a<2時,問函數(shù)f(x)有多少個極值點?(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
2
-
y2
2
=1的兩條漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.已知函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,則使函數(shù)y=g(x)與x軸無交點的a的取值范圍是(  )
A、0<α<
2+
3
16
B、
2-
3
16
<α<
2+
3
16
C、α<
2+
3
8
D、0<α<
2-
3
16
或α>
2+
3
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ∈(0,
π
2
),則點P(θ-sinθ,θ-tanθ)在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l過點P(
4
3
,2),且與x軸,y軸的正半軸分別交于A,B兩點,O為坐標原點.
(1)當△AOB的周長為12時,求直線l的方程;
(2)當△AOB的面積為6時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x2-3x+m(m為常數(shù))與x軸交于A,B兩點且線段AB的長為
1
2

(1)求m的值;
(2)若拋物線的頂點為P,求△ABP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題錯誤的是( 。
A、命題“若p則q”與命題“若¬q,則¬p”互為逆否命題
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
C、?x>0且x≠1,都有x+
1
x
>2
D、“若am2<bm2,則a<b”的逆命題為真

查看答案和解析>>

同步練習(xí)冊答案