【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

【答案】(1)證明見解析.

(2) .

【解析】試題分析:(1) 中由余弦定理可知,作于點,由面面垂直性質(zhì)定理得平面.所以. 又∵從而得證;

(2)以為原點,以方向為軸正方向建立如圖所示空間直角坐標(biāo)系,由二面角的大小為60°布列關(guān)于的方程解之即可.

試題解析:

(1)中,由余弦定理,可得.

,

,∴.

于點,

∵平面平面

平面平面,

平面.

平面,

.

又∵ ,

平面.

又∵平面

.

,

平面.

(2)由(1)知兩兩垂直,以為原點,以方向為軸正方向建立如圖所示空間直角坐標(biāo)系,

, , .

設(shè)

則由

.

設(shè)平面的一個法向量為,

則由

,

.

平面的一個法向量可取,

.

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生期中考試數(shù)學(xué)成績的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學(xué)生,將該樣本看成一個總體,從中隨機抽取2,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)設(shè)是函數(shù)的極值點,求證:

設(shè)是函數(shù)的極值點,且恒成立,求實數(shù)的取值范圍.(其中正

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列不正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Wab0)的離心率,其右頂點A2,0),直線l過點B10)且與橢圓交于C,D兩點.

)求橢圓W的標(biāo)準(zhǔn)方程;

)判斷點A與以CD為直徑的圓的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),若當(dāng)時, 的最大值為.

(1)求函數(shù)的解析式;

(2)若對任意的, ,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】改革開放以來,中國經(jīng)濟飛速發(fā)展,科學(xué)技術(shù)突飛猛進。高鐵、核電、橋梁、激光、通信、人工智能、航空航天、移動支付、量子通訊、特高壓輸電等許多技術(shù)都領(lǐng)先于世界。厲害了,我的國!把“厲害了我的國”這六個字隨機地排成一排,其中“厲”、“害”這兩個字必須相鄰(可以交換順序),“了”、“的”這兩個助詞不能相鄰,則不同排法的種數(shù)為( )。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠制作了3種與“福”字有關(guān)的精美卡片,分別是“富強!薄ⅰ昂椭C!薄ⅰ坝焉聘!,每袋食品隨機裝入一張卡片,若只有集齊3種卡片才可獲獎,則購買該食品4袋,獲獎的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年“雙十一”全網(wǎng)銷售額達3143.25億元,相當(dāng)于全國人均消費225元,同比增長23.8%,監(jiān)測參與“雙十一”狂歡大促銷的22家電商平臺有天貓、京東、蘇寧易購、網(wǎng)易考拉在內(nèi)的綜合性平臺,有拼多多等社交電商平臺,有敦煌網(wǎng)、速賣通等出口電商平臺.某大學(xué)學(xué)生社團在本校1000名大一學(xué)生中采用男女分層抽樣,分別隨機調(diào)查了若干個男生和60個女生的網(wǎng)購消費情況,制作出男生的頻率分布表、直方圖(部分)和女生的莖葉圖如下:

(1)請完成頻率分布表的三個空格,并估計該校男生網(wǎng)購金額的中位數(shù)(單位:元,精確到個位).

(2)若網(wǎng)購為全國人均消費的三倍以上稱為“剁手黨”估計該校大一學(xué)生中的“剁手黨”人數(shù)為多少?從抽樣數(shù)據(jù)中網(wǎng)購不足200元的同學(xué)中隨機抽取2人發(fā)放紀(jì)念品,則2人都是女生的概率為多少?

(3)用頻率估計概率,從全市所有高校大一學(xué)生中隨機調(diào)查5人,求其中“剁手黨”人數(shù)的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案