2.設(shè)復(fù)數(shù)z滿足$\frac{z}{2-z}$=i,則$\overline z$=1-i.

分析 把已知等式變形,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡求得z,再由共軛復(fù)數(shù)的概念得答案.

解答 解:∵$\frac{z}{2-z}$=i,
∴z=2i-iz,即(1+i)z=2i,
得$z=\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=1+i$,
∴$\overline{z}=1-i$.
故答案為:1-i.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.命題p:關(guān)于x的不等式x2+2ax+4>0對一切x∈R恒成立,q:函數(shù)f(x)=(3-2a)x是增函數(shù).若p∨q為真,p∧q為假.求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù),又在(-∞,0)上單調(diào)遞減的函數(shù)是( 。
A.y=-x2B.y=2-|x|C.$y=|{\frac{1}{x}}|$D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a=log32,b=log5$\frac{1}{2}$,c=log23,則( 。
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知定義在R上的函數(shù)f(x)滿足:
①當(dāng)x>0時,函數(shù)f(x)為增函數(shù),f(-2)=0;
②函數(shù)f(x+1)的圖象關(guān)于點(-1,0)對稱,
則不等式$\frac{f(x)}{x}$>0的解集為( 。
A.(-∞,-2)∪(0,2)B.(-2,0)∪(2,+∞)C.(-2,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某蛋糕店每天制作生日蛋糕若干個,每個生日蛋糕的成本為50元,然后以每個100元的價格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個),得到如圖3所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個生日蛋糕.

(1)求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:個,n∈N)的函數(shù)解析式;
(2)求當(dāng)天的利潤不低于750元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.用秦九韶算法計算函數(shù)f(x)=2x5+3x4+2x3-4x+5當(dāng)x=2時的函數(shù)值為(  )
A.100B.125C.60D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an}的前n項和記為Sn,a1=1,an+1=2Sn+1(n≥1).
(1)求{an}的通項公式;
(2)求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=log2$\frac{x}{4}•{log_2}\frac{x}{2}+\frac{1}{4}$最小值0.

查看答案和解析>>

同步練習(xí)冊答案