【題目】已知函數f(x)=|x﹣1|﹣|x+2|. (Ⅰ)求不等式﹣2<f(x)<0的解集A;
(Ⅱ)若m,n∈A,證明:|1﹣4mn|>2|m﹣n|.
【答案】解:(Ⅰ)依題意, , 由不等式﹣2<f(x)<0,可得﹣2<﹣2x﹣1<0,解得 ,故 .
(Ⅱ)由(Ⅰ)可知, ;
因為|1﹣4mn|2﹣4|m﹣n|2=(1﹣8mn+16m2n2)﹣4(m2﹣2mn+n2)=(4m2﹣1)(4n2﹣1)>0,
故|1﹣4mn|2>4|m﹣n|2 , 故|1﹣4mn|>2|m﹣n|
【解析】(Ⅰ)根據f(x)的解析式,求得不等式﹣2<f(x)<0的解集A.(Ⅱ)由(Ⅰ)可知, ,故要證明|1﹣4mn|>2|m﹣n|,只要證明左邊的平方大于右邊的平方即可.
【考點精析】本題主要考查了絕對值不等式的解法的相關知識點,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數f(x)的最小值,并寫出此時x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|3≤≤27},B={x|>1}.
(1)分別求A∩B,()∪A;
(2)已知集合C={x|1<x<a},若CA,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為 ,且過點M(4,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m(m≠﹣3)與橢圓C交于P,Q兩點,記直線MP,MQ的斜率分別為k1 , k2 , 試探究k1+k2是否為定值.若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數的f(x)= sin(ωx+φ)(ω>0,﹣ )圖象關于直線x= 對稱,且圖象上相鄰兩個最高點的距離為π,若 (0<α<π),則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=的上方,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點.
(Ⅰ)證明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現對某市工薪階層關于“樓市限購令”的態(tài)度進行調查,隨機抽調了50人,他們月收入的頻數分布及對“樓市限購令”贊成人數如下表.
月收入(單位百元) | [15,25 | [25,35 | [35,45 | [45,55 | [55,65 | [65,75 |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計數據求下面22列聯表中的的值,并問是否有99%的把握認為“月收入以5500為分界點對“樓市限購令” 的態(tài)度有差異;
月收入低于55百元的人數 | 月收入不低于55百元的人數 | 合計 | |
贊成 | a | b | |
不贊成 | c | d | |
合計 | 50 |
(2)若對在[55,65)內的被調查者中隨機選取兩人進行追蹤調查,記選中的2人中不贊成“樓市限購令”的人數為,求的概率.
附:,
0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com