4.某個命題與正整數(shù)有關,若當n=k(k∈N*)時該命題成立,那么可推得當n=k+1時該命題也成立,現(xiàn)已知當n=9時該命題不成立,那么可推得( 。
A.當n=10時,該命題不成立B.當n=10時,該命題成立
C.當n=8時,該命題成立D.當n=8時,該命題不成立

分析 利用逆否命題的真假判斷原命題的真假,利用數(shù)學歸納法判斷即可.

解答 解:因為原命題與逆否命題的真假性相同,所以若當n=k(k∈N*)時該命題成立,那么可推得當n=k+1時該命題也成立,現(xiàn)已知當n=9時該命題不成立,那么可推得:當n=8時,該命題不成立.
故選:D.

點評 本題考查數(shù)學歸納法的應用,原命題與逆否命題的等價性的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.根據(jù)如表樣本數(shù)據(jù)
x3456
y2.5t44.5
得到回歸方程y=0.7x+0.35,則t=(  )
A.2.6B.2.8C.2.9D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設鐵路AB長為100,BC⊥AB,且BC=30,為將貨物從A運往C,現(xiàn)在AB上距點B為x的點M處修一公路至C,已知單位距離的鐵路運費為2,公路運費為4.
(1)將總運費y表示為x的函數(shù);
(2)如何選點M才使總運費最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{1}{2}{cos^2}x+\frac{{\sqrt{3}}}{2}$sinxcosx+1.
(1)求函數(shù)f(x)的最小正周期和其圖象對稱中心的坐標;
(2)求函數(shù)f(x)在$[\frac{π}{12},\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=$\sqrt{3}$,(2$\overrightarrow{a}$-3$\overrightarrow$)•(2$\overrightarrow{a}$+$\overrightarrow$)=19
(1)求$\overrightarrow{a}$與$\overrightarrow$的夾角θ
(2)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+λ$\overrightarrow$),求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知曲線y=(1-x)xn(n∈N*)在$x=\frac{1}{2}$處的切線為l,直線l在y軸上上的截距為bn,則數(shù)列{bn}的通項公式為bn=(2-n)($\frac{1}{2}$)n+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若函數(shù)f(x)=x2-2lnx在x=x0處的切線與直線x+3y+2=0垂直,則x0=( 。
A.$-\frac{1}{2}$或2B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.復數(shù)z滿足(3-4i)z=5+10i,則|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.統(tǒng)計表明:某型號的汽車在勻速行駛中每小時的耗油量y(升)關于速度x(千米/時)的函數(shù)解析式可表示為y=$\frac{{x}^{2}}{800}$-$\frac{3}{20}$x+8(0<x≤120),已知甲、乙兩地相距100千米.
(1)當汽車以40千米/時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

同步練習冊答案