9.某幾何體的三視圖所示(單位:cm),則該幾何體的體積為( 。
A.5B.6C.7D.15

分析 由已知中的三視圖,可得該幾何體是一個(gè)以側(cè)視圖為底面的三棱柱,切去一個(gè)三棱錐所得的幾何體,代入公式,可得答案.

解答 解:由已知中的三視圖,可得該幾何體是一個(gè)以側(cè)視圖為底面的三棱柱,
切去一個(gè)三棱錐所得的幾何體,
它們的底面面積均為:$\frac{1}{2}$×2×3=3,
棱柱的高為3,棱錐的高為2,
故組合體的體積V=3×3-$\frac{1}{3}$×3×2=7,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是棱柱和棱錐的體積和表面積,簡(jiǎn)單幾何體的三視圖,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)=ax3+x2-bx+1,已知f(1)=0,則f(-1)=(  )
A.4B.2C.0D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知sin(α+$\frac{π}{6}}$)=$\frac{4}{5}$,且α∈(0,$\frac{π}{3}$),則sinα的值是( 。
A.$-\frac{{2\sqrt{3}}}{5}$B.$\frac{{2\sqrt{3}}}{5}$C.$\frac{{4\sqrt{3}-3}}{10}$D.$\frac{{4\sqrt{3}+3}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為$\frac{2π}{3}$,且|${\overrightarrow a}$|=|${\overrightarrow b}$|=2,又向量$\overrightarrow c$=x$\overrightarrow a$+y$\overrightarrow b$(x∈R且x≠0,y∈R),則|$\frac{|x|}{|\overrightarrow{c}|}$的最大值為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,三個(gè)邊長(zhǎng)為2的等邊三角形有一條邊在同一條直線上,邊GD上有10個(gè)不同的點(diǎn)P1,P2,P3…P10,則$\overrightarrow{AF}$•($\overrightarrow{A{P_1}$+$\overrightarrow{A{P_2}}$+$\overrightarrow{A{P_3}}$+…+$\overrightarrow{A{P_{10}}}$)=180.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=1-$\frac{a}{x}$-lnx(a∈R).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)($\frac{1}{2}$,f($\frac{1}{2}$))處的切線方程;
(Ⅱ)當(dāng)a≥0時(shí),記函數(shù)Γ(x)=$\frac{1}{2}$ax2+(1-2a)x+$\frac{a}{x}$-1+f(x),試求Γ(x)的單調(diào)遞減區(qū)間;
(Ⅲ)設(shè)函數(shù)h(x)=3λa-2a2(其中λ為常數(shù)),若函數(shù)f(x)在區(qū)間(0,2)上不存在極值,當(dāng)λ∈(-∞,0]∪[${\frac{8}{3}$,+∞)時(shí),求h(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)集合A={x|x2-x<0},B={x|0<x<3},那么“m∈A”是“m∈B”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)p:2x2-x-1≤0,q:x2-(2a-1)x+a(a-1)≤0,若非q是非p的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)平面向量$\overrightarrow m$=(-1,2),$\overrightarrow n$=(2,b),若$\overrightarrow m$∥$\overrightarrow n$,則|$\overrightarrow{m}$-$\overrightarrow{n}$|=3$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案